Regularity of flows of a non-Newtonian fluid subject to Dirichlet boundary conditions

被引:0
作者
Kaplicky, P [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 18675 8, Czech Republic
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2005年 / 24卷 / 03期
关键词
generalized Newtonian fluid; initial boundary value problem; regularity; C-1; C-alpha solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a planar flow of a generalized Newtonian fluid under the Dirichlet boundary condition. The fluid is characterized by a nonlinear dependence of the stress tensor on the symmetric part of the velocity gradient. We prove that the unique weak solution of this problem has a Holder continuous gradient provided the growth of the stress tensor is of order p - 1 for a certain p E (2, 4). The result is global in time and in space.
引用
收藏
页码:467 / 486
页数:20
相关论文
共 24 条
  • [11] Some remarks to regularity of flow of generalized Newtonian fluid
    Kaplicky, P
    [J]. EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 377 - 379
  • [12] Kaplicky P, 1999, APPLIED NONLINEAR ANALYSIS, P213
  • [13] Kaplicky P., 1997, MATH U CAROLIN, V38, P681
  • [14] Kaplicky P., 1999, ZAP NAUCHN SEM, V259, P30
  • [15] KOCH H., 2001, J. Math. Sci. (N. Y.), V106, P3042
  • [16] LADYZHENSKAYA O, 1999, ZAP NAUCHN SEM S PET, V259, P30
  • [17] Malek J., 1996, APPL MATH MATH COMPU, V13
  • [18] Malek J., 2001, Adv. Differential Equations, V6, P257, DOI 10.57262/ade/1357141212
  • [19] Necas J., 1991, ANN SC NORM SUPER PI, V4, P1
  • [20] SEREGIN GA, 1997, ALGEBR ANAL, V9, P167