Cross-Lingual Language Modeling for Low-Resource Speech Recognition

被引:6
|
作者
Xu, Ping [1 ]
Fung, Pascale [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING | 2013年 / 21卷 / 06期
关键词
Cross-lingual language modeling; syntactic reordering; low-resource speech recognition; WFST; TRANSLATION;
D O I
10.1109/TASL.2013.2244088
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes using cross-lingual language modeling with syntactic information for low-resource speech recognition. We propose phrase-level transduction and syntactic reordering for transcribing a resource-poor language and translating it into a resource-rich language, if necessary. The phrase-level transduction is capable of performing n-m cross-lingual transduction. The syntactic reordering serves to model the syntactic discrepancies between the source and target languages. Our purpose is to leverage the statistics in a resource-rich language model to improve the language model of a resource-poor language and at the same time to improve low-resource speech recognition performance. We implement our cross-lingual language model using weighted finite-state transducers (WFSTs), and integrate it into a WFST-based speech recognition search space to output the transcriptions of both resource-poor and resource-rich languages. This creates an integrated speech transcription and translation framework. Evaluations on Cantonese speech transcription and Cantonese to standard Chinese translation tasks show that our proposed approach improves the system performance significantly, with up to 12.5% relative character error rate (CER) reduction over baseline language model interpolation, 6.6% relative CER reduction and 18.5% relative BLEU score improvement, compared to the best word-level transduction approach.
引用
收藏
页码:1134 / 1144
页数:11
相关论文
共 50 条
  • [1] CAM: A cross-lingual adaptation framework for low-resource language speech recognition
    Hu, Qing
    Zhang, Yan
    Zhang, Xianlei
    Han, Zongyu
    Yu, Xilong
    INFORMATION FUSION, 2024, 111
  • [2] Exploiting Adapters for Cross-Lingual Low-Resource Speech Recognition
    Hou, Wenxin
    Zhu, Han
    Wang, Yidong
    Wang, Jindong
    Qin, Tao
    Xu, Renju
    Shinozaki, Takahiro
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 317 - 329
  • [3] Cross-Lingual Word Embeddings for Low-Resource Language Modeling
    Adams, Oliver
    Makarucha, Adam
    Neubig, Graham
    Bird, Steven
    Cohn, Trevor
    15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, 2017, : 937 - 947
  • [4] Cross-Lingual and Ensemble MLPs Strategies for Low-Resource Speech Recognition
    Qian, Yanmin
    Liu, Jia
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2581 - 2584
  • [5] Cross-Lingual Subspace Gaussian Mixture Models for Low-Resource Speech Recognition
    Lu, Liang
    Ghoshal, Arnab
    Renals, Steve
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (01) : 17 - 27
  • [6] Cross-lingual subspace Gaussian mixture models for low-resource speech recognition
    1600, Institute of Electrical and Electronics Engineers Inc., United States (22):
  • [7] SUBSPACE MIXTURE MODEL FOR LOW-RESOURCE SPEECH RECOGNITION IN CROSS-LINGUAL SETTINGS
    Miao, Yajie
    Metze, Florian
    Waibel, Alex
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 7339 - 7343
  • [8] Cross-lingual subspace Gaussian mixture models for low-resource speech recognition
    1600, Institute of Electrical and Electronics Engineers Inc., United States (22):
  • [9] CROSS-LINGUAL TRANSFER LEARNING FOR LOW-RESOURCE SPEECH TRANSLATION
    Khurana, Sameer
    Dawalatabad, Nauman
    Laurent, Antoine
    Vicente, Luis
    Gimeno, Pablo
    Mingote, Victoria
    Glass, James
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 670 - 674
  • [10] Learning Cross-lingual Mappings for Data Augmentation to Improve Low-Resource Speech Recognition
    Farooq, Muhammad Umar
    Hain, Thomas
    INTERSPEECH 2023, 2023, : 5072 - 5076