Symmetric norms and reverse inequalities to Davis and Hansen-Pedersen characterizations of operator convexity

被引:0
作者
Bourin, JC [1 ]
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Pontoise, France
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2006年 / 9卷 / 01期
关键词
symmetric norms; operator convex functions; operator inequalities;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A, B, Z be n-by-n matrices. Suppose AB >= 0 (positive semi-definite) and Z > 0 with extremal eigenvalues a and b. Then, the sharp inequality parallel to ZAB parallel to <= a + b/2 root ab parallel to BZA parallel to holds for every unitarily invariant norm. Among the consequences, we get the operator inequality XZX <= [(a + b)(2)/4ab]Z for every 0 <= X <= I. and some Kantorovich type inequalities (MondPecaric inequalities). Also in connection, reverse inequalities of Davis and Hansen-Pedersen characterizations of operator convexity are established. For instance, given any operator convex function f : [0, infinity) --> [0, infinity) and any subspace E, f(Z(E)) >= 4ab/(a+b)(2) (f(Z))(E). In passing, we point out a simplified proof of Hansen-Pedersen's inequality.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 6 条
[1]  
[Anonymous], 1994, LINEAR MULTILINEAR A, DOI [DOI 10.1080/03081089408818291, 10.1080/03081089408818291]
[2]  
Davis C., 1957, Proc. Am. Math. Soc, V8, P42, DOI [DOI 10.1090/S0002-9939-1957-0084120-4, 10.1090/S0002-9939-1957-0084120-4]
[3]   OPERATOR-INEQUALITY [J].
HANSEN, F .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :249-250
[4]   JENSEN INEQUALITY FOR OPERATORS AND LOWNER THEOREM [J].
HANSEN, F ;
PEDERSEN, GK .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :229-241
[5]   Jensen's operator inequality [J].
Hansen, F ;
Pedersen, GK .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :553-564
[6]  
Stinespring W. F., 1955, P AM MATH SOC, V6, P211, DOI [10.2307/2032342, DOI 10.2307/2032342]