Comprehensive and clinically accurate head and neck cancer organs-at-risk delineation on a multi-institutional study

被引:23
作者
Ye, Xianghua [1 ]
Guo, Dazhou [2 ]
Ge, Jia [1 ]
Yan, Senxiang [1 ]
Xin, Yi [3 ]
Song, Yuchen [1 ]
Yan, Yongheng [1 ]
Huang, Bing-shen [4 ]
Hung, Tsung-Min [4 ]
Zhu, Zhuotun [5 ]
Peng, Ling [6 ]
Ren, Yanping [7 ]
Liu, Rui [8 ]
Zhang, Gong [9 ]
Mao, Mengyuan [10 ]
Chen, Xiaohua [11 ]
Lu, Zhongjie [1 ]
Li, Wenxiang [1 ]
Chen, Yuzhen [4 ]
Huang, Lingyun [3 ]
Xiao, Jing [3 ]
Harrison, Adam P. [12 ]
Lu, Le [2 ]
Lin, Chien-Yu [4 ,13 ,14 ]
Jin, Dakai [2 ]
Ho, Tsung-Ying [15 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 1, Dept Radiat Oncol, Hangzhou, Peoples R China
[2] Alibaba Grp, DAMO Acad, New York, NY 10014 USA
[3] Ping An Technol, Shenzhen, Peoples R China
[4] Chang Gung Mem Hosp, Dept Radiat Oncol, Linkou, Taiwan
[5] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[6] Zhejiang Prov Peoples Hosp, Dept Resp Dis, Hangzhou, Zhejiang, Peoples R China
[7] Fudan Univ, Dept Radiat Oncol, Huadong Hosp, Shanghai, Peoples R China
[8] Xi An Jiao Tong Univ, Affiliated Hosp 1, Dept Radiat Oncol, Xian, Peoples R China
[9] Peoples Hosp Shanxi Prov, Dept Radiat Oncol, Xian, Shaanxi, Peoples R China
[10] Southern Med Univ, Nanfang Hosp, Dept Radiat Oncol, Guangzhou, Peoples R China
[11] Lanzhou Univ, Dept Radiat Oncol, Hosp 1, Lanzhou, Gansu, Peoples R China
[12] Q Bio Inc, San Carlos, CA USA
[13] Chang Gung Mem Hosp, Particle Phys & Beam Delivery Core Lab, Taoyuan, Taiwan
[14] Chang Gung Univ, Taoyuan, Taiwan
[15] Chang Gung Mem Hosp, Dept Nucl Med, Linkou, Taiwan
关键词
RADIATION-THERAPY; NASOPHARYNGEAL CANCER; AUTO-SEGMENTATION; RADIOTHERAPY; FATIGUE; ATLAS; ONCOLOGY;
D O I
10.1038/s41467-022-33178-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate organ-at-risk (OAR) segmentation is critical to reduce radiotherapy complications. Consensus guidelines recommend delineating over 40 OARs in the head-and-neck (H&N). However, prohibitive labor costs cause most institutions to delineate a substantially smaller subset of OARs, neglecting the dose distributions of other OARs. Here, we present an automated and highly effective stratified OAR segmentation (SOARS) system using deep learning that precisely delineates a comprehensive set of 42 H&N OARs. We train SOARS using 176 patients from an internal institution and independently evaluate it on 1327 external patients across six different institutions. It consistently outperforms other state-of-the-art methods by at least 3-5% in Dice score for each institutional evaluation (up to 36% relative distance error reduction). Crucially, multi-user studies demonstrate that 98% of SOARS predictions need only minor or no revisions to achieve clinical acceptance (reducing workloads by 90%). Moreover, segmentation and dosimetric accuracy are within or smaller than the inter-user variation.
引用
收藏
页数:15
相关论文
共 48 条
[1]   CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines [J].
Brouwer, Charlotte L. ;
Steenbakkers, Roel J. H. M. ;
Bourhis, Jean ;
Budach, Wilfried ;
Grau, Cai ;
Gregoire, Vincent ;
van Herk, Marcel ;
Lee, Anne ;
Maingon, Philippe ;
Nutting, Chris ;
O'Sullivan, Brian ;
Porceddu, Sandro V. ;
Rosenthal, David I. ;
Sijtsema, Nanna M. ;
Langendijk, Johannes A. .
RADIOTHERAPY AND ONCOLOGY, 2015, 117 (01) :83-90
[2]   Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images [J].
Chen, Wen ;
Li, Yimin ;
Dyer, Brandon A. ;
Feng, Xue ;
Rao, Shyam ;
Benedict, Stanley H. ;
Chen, Quan ;
Rong, Yi .
RADIATION ONCOLOGY, 2020, 15 (01)
[3]   Delineation of organs at risk involved in swallowing for radiotherapy treatment planning [J].
Christianen, Miranda E. M. C. ;
Langendijk, Johannes A. ;
Westerlaan, Henriette E. ;
van de Water, Tara A. ;
Bijl, Hendrik P. .
RADIOTHERAPY AND ONCOLOGY, 2011, 101 (03) :394-402
[4]   Nasopharyngeal carcinoma [J].
Chua, Melvin L. K. ;
Wee, Joseph T. S. ;
Hui, Edwin P. ;
Chan, Anthony T. C. .
LANCET, 2016, 387 (10022) :1012-1024
[5]   The posterior cerebellum, a new organ at risk? [J].
Eekers, Danielle B. P. ;
Ven, Lieke In't ;
Deprez, Sabine ;
Jacobi, Linda ;
Roelofs, Erik ;
Hoeben, Ann ;
Lambin, Philippe ;
de Ruysscher, Dirk ;
Troost, Esther G. C. .
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY, 2018, 8 :22-26
[6]   FocusNet: Imbalanced Large and Small Organ Segmentation with an End-to-End Deep Neural Network for Head and Neck CT Images [J].
Gao, Yunhe ;
Huang, Rui ;
Chen, Ming ;
Wang, Zhe ;
Deng, Jincheng ;
Chen, Yuanyuan ;
Yang, Yiwei ;
Zhang, Jie ;
Tao, Chanjuan ;
Li, Hongsheng .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :829-838
[7]   Dosimetric explanations of fatigue in head and neck radiotherapy: An analysis from the PARSPORT Phase III trial [J].
Gulliford, Sarah L. ;
Miah, Aisha B. ;
Brennan, Sinead ;
McQuaid, Dualta ;
Clark, Catharine H. ;
Partridge, Mike ;
Harrington, Kevin J. ;
Morden, James P. ;
Hall, Emma ;
Nutting, Christopher M. .
RADIOTHERAPY AND ONCOLOGY, 2012, 104 (02) :205-212
[8]   DeepStationing: Thoracic Lymph Node Station Parsing in CT Scans Using Anatomical Context Encoding and Key Organ Auto-Search [J].
Guo, Dazhou ;
Ye, Xianghua ;
Ge, Jia ;
Di, Xing ;
Lu, Le ;
Huang, Lingyun ;
Xie, Guotong ;
Xiao, Jing ;
Lu, Zhongjie ;
Peng, Ling ;
Yan, Senxiang ;
Jin, Dakai .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 :3-12
[9]   Organ at Risk Segmentation for Head and Neck Cancer using Stratified Learning and Neural Architecture Search [J].
Guo, Dazhou ;
Jin, Dakai ;
Zhu, Zhuotun ;
Ho, Tsung-Ying ;
Harrison, Adam P. ;
Chao, Chun-Hung ;
Xiao, Jing ;
Lu, Le .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :4222-4231
[10]  
Han X, 2008, LECT NOTES COMPUT SC, V5242, P434