Distributed Kalman Filtering With Dynamic Observations Consensus

被引:129
作者
Das, Subhro [1 ]
Moura, Jose M. F. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Distributed algorithms; distributed estimation; dynamic consensus; Kalman filter; sensor networks; STRATEGIES; COST;
D O I
10.1109/TSP.2015.2424205
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies distributed estimation of unstable dynamic random fields observed by a sparsely connected network of sensors. The field dynamics are globally detectable, but not necessarily locally detectable. We propose a consensus+innovations distributed estimator, termed Distributed Information Kalman Filter. We prove under what conditions this estimator is asymptotically unbiased with bounded mean-squared error, smaller than for other alternative distributed estimators. Monte Carlo simulations confirm our theoretical error asymptotic results.
引用
收藏
页码:4458 / 4473
页数:16
相关论文
共 45 条
[1]   Convergence of Rule-of-Thumb Learning Rules in Social Networks [J].
Acemoglu, Daron ;
Nedic, Angelia ;
Ozdaglar, Asuman .
47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, :1714-1720
[2]  
Anderson B. D., 2012, OPTIMAL FILTERING SE
[3]  
[Anonymous], 2005, P IFAC WORLD C
[4]  
[Anonymous], ARXIV14020246
[5]  
[Anonymous], RES J APPL SCI
[6]  
[Anonymous], P 51 ANN ALL C COMM
[7]  
[Anonymous], 2006, P 17 INT S MATH THEO
[8]   Robust Dynamic Average Consensus of Time-varying Inputs [J].
Bai, He ;
Freeman, Randy A. ;
Lynch, Kevin M. .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :3104-3109
[9]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[10]  
Blood EA, 2008, IEEE POW ENER SOC GE, P5601