The periodic motions of a gas

被引:0
|
作者
Ovsyannikov, LV
机构
来源
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS | 2001年 / 65卷 / 04期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1016/S0021-8928(01)00061-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-dimensional periodic motions of a gas, described by a class of rotational and rotational-symmetrical exact solutions of the gas-dynamic equations, are considered. The investigation is based on constructing first integrals and a lemma on the existence of periodic functions, defined by quadratures of special form. The idea of limiting relations is introduced, which enable approximate relations to be established between the constituent parameters and which give a qualitative representation on the form of the periodic gas motion being investigated. In addition to examples of a limit analysis of previously known motions, an existence theorem of a new form of periodic motion called a "gaseous pinion" is presented. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:553 / 563
页数:11
相关论文
共 50 条
  • [31] AVERAGING IN THE VICINITY OF STEADY PERIODIC MOTIONS
    KOZLOV, VV
    DOKLADY AKADEMII NAUK SSSR, 1982, 264 (03): : 567 - 570
  • [32] PERIODIC MOTIONS AROUND PULSATING STARS
    SELARU, D
    CUCUDUMITRESCU, C
    MIOC, V
    ASTROPHYSICS AND SPACE SCIENCE, 1993, 202 (01) : 11 - 19
  • [33] Generating Periodic Motions for the Butterfly Robot
    Morales, Daniel Ortiz
    La Hera, Pedro
    Rehman, Shafiq Ur
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2527 - 2532
  • [34] Classifying periodic motions in video sequences
    Orriols, X
    Binefa, X
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS, 2003, : 945 - 948
  • [35] THE THEORY OF QUASI-PERIODIC MOTIONS
    林振声
    ScienceinChina,SerA., 1986, Ser.A.1986 (06) : 561 - 569
  • [36] Stability of periodic motions of quasilinear systems
    Lila, D. M.
    Martynyuk, A. A.
    INTERNATIONAL APPLIED MECHANICS, 2008, 44 (10) : 1161 - 1172
  • [37] ON STABILITY OF ALMOST-PERIODIC MOTIONS
    VERETENN.VG
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1968, 32 (01): : 103 - &
  • [38] Periodic motions of vortices on surfaces with symmetry
    Soulière, A
    Tokieda, T
    JOURNAL OF FLUID MECHANICS, 2002, 460 : 83 - 92
  • [39] Mean motions and almost periodic functions
    Hartman, Philip
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1939, 46 (1-3) : 66 - 81
  • [40] On periodic motions of an inclined impact pair
    Zhang, Yanyan
    Fu, Xilin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 1033 - 1042