Photo-thermal effects in gold nanoparticles dispersed in thermotropic nematic liquid crystals

被引:46
作者
Pezzi, Luigia [1 ,2 ]
De Sio, Luciano [3 ]
Veltri, Alessandro [4 ]
Placido, Tiziana [5 ,6 ]
Palermo, Giovanna [1 ,2 ]
Comparelli, Roberto [6 ]
Curri, Maria Lucia [6 ]
Agostiano, Angela [5 ,6 ]
Tabiryan, Nelson [3 ]
Umeton, Cesare [1 ,2 ]
机构
[1] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, CS, Italy
[2] CNR NSNOTEC UOS Li Cryl Cosenza, Cosenza, Italy
[3] Beam Engn Adv Measurements Co, Orlando, FL 32789 USA
[4] Univ San Francisco Quito, Colegio Ciencias & Ingn, Quito, Ecuador
[5] Univ Bari, Dipartmento Chim, I-70126 Bari, Italy
[6] CNR, IPCF Ist & Proc Chim & Fis, Sez Bari, I-70126 Bari, Italy
关键词
REFRACTIVE-INDEXES; CANCER-THERAPY; MECHANISMS; NANORODS; TISSUES; MODEL; HEAT;
D O I
10.1039/c5cp01377a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The last few years have seen a growing interest in the ability of metallic nanoparticles (MNPs) to control temperature at the nanoscale. Under a suitable optical radiation, MNPs feature an enhanced light absorption/scattering, thus turning into an ideal nano-source of heat, remotely controllable by means of light. In this framework, we report our recent efforts on modeling and characterizing the photo-thermal effects observed in gold nanoparticles (GNPs) dispersed in thermotropic Liquid Crystals (LCs). Photo-induced temperature variations in GNPs dispersed in Nematic LCs (NLCs) have been studied by implementing an ad hoc theoretical model based on the thermal heating equation applied to an anisotropic medium. Theoretical predictions have been verified by performing photo-heating experiments on a sample containing a small percentage of GNPs dispersed in NLCs. Both theory and experiments represent an important achievement in understanding the physics of heat transfer at the nanoscale, with applications ranging from photonics to nanomedicine.
引用
收藏
页码:20281 / 20287
页数:7
相关论文
共 40 条
[1]   THERMAL-CONDUCTIVITY OF THE NEMATIC LIQUID-CRYSTAL 4-N-PENTYL-4'-CYANOBIPHENYL [J].
AHLERS, G ;
CANNELL, DS ;
BERGE, LI ;
SAKURAI, S .
PHYSICAL REVIEW E, 1994, 49 (01) :545-553
[2]  
[Anonymous], 1986, Conduction of Heat in Solids
[3]   Heat generation in plasmonic nanostructures: Influence of morphology [J].
Baffou, G. ;
Quidant, R. ;
Girard, C. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[4]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[5]   Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis [J].
Baffou, Guillaume ;
Bon, Pierre ;
Savatier, Julien ;
Polleux, Julien ;
Zhu, Min ;
Merlin, Marine ;
Rigneault, Herve ;
Monneret, Serge .
ACS NANO, 2012, 6 (03) :2452-2458
[6]   Thermocapillary valve for droplet production and sorting [J].
Baroud, Charles N. ;
Delville, Jean-Pierre ;
Gallaire, Francois ;
Wunenburger, Regis .
PHYSICAL REVIEW E, 2007, 75 (04)
[7]  
Blinov L.M., 2010, STRUCTURE PROPERTIES, V123
[8]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[9]   Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes [J].
Cao, Linyou ;
Barsic, David N. ;
Guichard, Alex R. ;
Brongersma, Mark L. .
NANO LETTERS, 2007, 7 (11) :3523-3527
[10]   Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings [J].
Caputo, R ;
Veltri, A ;
Umeton, C ;
Sukhov, AV .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (04) :735-742