A review of artificial. intelligence in prostate cancer detection on imaging

被引:38
作者
Bhattacharya, Indrani [1 ,2 ]
Khandwala, Yash S. [2 ]
Vesal, Sulaiman [2 ]
Shao, Wei [1 ]
Yang, Qianye [3 ,4 ]
Soerensen, Simon J. C. [2 ,5 ]
Fan, Richard E. [2 ]
Ghanouni, Pejman [1 ,2 ]
Kunder, Christian A. [6 ]
Brooks, James D. [2 ]
Hu, Yipeng [3 ,4 ]
Rusu, Mirabela [1 ]
Sonn, Geoffrey A. [1 ,2 ]
机构
[1] Stanford Univ, Dept Radiol, Sch Med, 1201 Welch Rd, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Urol, Sch Med, Stanford, CA 94305 USA
[3] UCL, Ctr Med Image Comp, London, England
[4] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
[5] Stanford Univ, Dept Epidemiol & Populat Hlth, Sch Med, Stanford, CA USA
[6] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; histopathology images; magnetic resonance imaging; prostate cancer diagnosis; registration; ultrasound images; SHEAR-WAVE ELASTOGRAPHY; WHOLE-MOUNT HISTOLOGY; MULTI-PARAMETRIC MRI; PI-RADS V2; MAGNETIC-RESONANCE; COMPUTED-TOMOGRAPHY; ULTRASOUND FUSION; MICRO-ULTRASOUND; BIPARAMETRIC MRI; SEGMENTATION;
D O I
10.1177/17562872221128791
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care.
引用
收藏
页数:31
相关论文
共 210 条
[1]  
Abraham Bejoy, 2019, Informatics in Medicine Unlocked, V17, P150, DOI 10.1016/j.imu.2019.100256
[2]  
Abu Anas Emran Mohammad, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P365, DOI 10.1007/978-3-319-66179-7_42
[3]   A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy [J].
Abu Anas, Emran Mohammad ;
Mousavi, Parvin ;
Abolmaesumi, Purang .
MEDICAL IMAGE ANALYSIS, 2018, 48 :107-116
[4]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[5]   Application of hierarchical clustering to multi-parametric MR in prostate: Differentiation of tumor and normal tissue with high accuracy [J].
Akamine, Yuta ;
Ueda, Yu ;
Ueno, Yoshiko ;
Sofue, Keitaro ;
Murakami, Takamichi ;
Yoneyama, Masami ;
Obara, Makoto ;
Van Cauteren, Marc .
MAGNETIC RESONANCE IMAGING, 2020, 74 :90-95
[6]   Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network [J].
Aldoj, Nader ;
Lukas, Steffen ;
Dewey, Marc ;
Penzkofer, Tobias .
EUROPEAN RADIOLOGY, 2020, 30 (02) :1243-1253
[7]   Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study [J].
Algohary, Ahmad ;
Shiradkar, Rakesh ;
Pahwa, Shivani ;
Purysko, Andrei ;
Verma, Sadhna ;
Moses, Daniel ;
Shnier, Ronald ;
Haynes, Anne-Maree ;
Delprado, Warick ;
Thompson, James ;
Tirumani, Sreeharsha ;
Mahran, Amr ;
Rastinehad, Ardeshir R. ;
Ponsky, Lee ;
Stricker, Phillip D. ;
Madabhushi, Anant .
CANCERS, 2020, 12 (08) :1-14
[8]   A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images [J].
Alkadi, Ruba ;
Taher, Fatma ;
El-baz, Ayman ;
Werghi, Naoufel .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (05) :793-807
[9]   Deep Learning Improves Speed and Accuracy of Prostate Gland Segmentations on Magnetic Resonance Imaging for Targeted Biopsy [J].
不详 .
JOURNAL OF UROLOGY, 2021, 206 (03) :604-604
[10]  
[Anonymous], 2017, Cancer Imaging Arch