Weyl's theorem for the square of operator and perturbations
被引:4
作者:
Shi, Weijuan
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Shi, Weijuan
[1
]
Cao, Xiaohong
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Cao, Xiaohong
[1
]
机构:
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T is an element of B(H) satisfies Weyl's theorem if sigma(T)\sigma(w)(T) = pi(00)(T), where sigma(T) and sigma(w)(T) denote the spectrum and the Weyl spectrum of T, respectively, pi(00)(T) = {lambda is an element of iso sigma(T) : 0 < dim N(T - lambda I) < infinity}. T is an element of B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K is an element of B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T-2.
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Cao, XH
Guo, MZ
论文数: 0引用数: 0
h-index: 0
机构:Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Guo, MZ
Meng, B
论文数: 0引用数: 0
h-index: 0
机构:Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
机构:
Department of Mathematics, Faculty of Science Semlalia, B.O. 2390 Marrakesh, MoroccoDepartment of Mathematics, Faculty of Science Semlalia, B.O. 2390 Marrakesh, Morocco
M.AMOUCH
H.ZGUITTI
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Faculty of Science of Rabat, B. O. 1014 Rabat, MoroccoDepartment of Mathematics, Faculty of Science Semlalia, B.O. 2390 Marrakesh, Morocco