Mittag-Leffler stability of nonlinear fractional neutral singular systems

被引:37
|
作者
Liu, Song [1 ]
Li, Xiaoyan [1 ]
Jiang, Wei [1 ]
Zhou, Xianfeng [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230039, Peoples R China
基金
美国国家科学基金会;
关键词
Nonlinear fractional neutral singular system; Mittag-Leffler stability; Lyapunov direct method; Laplace transform; NUMERICAL ALGORITHM; DESCRIPTOR SYSTEMS; DELAY;
D O I
10.1016/j.cnsns.2012.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies Mittag-Leffler stability of nonlinear fractional neutral singular systems under Caputor and Riemann-Liouville derivatives. Several sufficient conditions are derived by extending Lyapunov direct method to such systems. Our theoretical results can also be applied to general fractional retarded, neutral and singular systems. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3961 / 3966
页数:6
相关论文
共 50 条
  • [11] Tempered Mittag-Leffler Stability of Tempered Fractional Dynamical Systems
    Deng, Jingwei
    Ma, Weiyuan
    Deng, Kaiying
    Li, Yingxing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [12] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [13] Mittag-Leffler stability and stabilization of ψ-caputo fractional homogeneous systems
    Omri, Faouzi
    Mabrouk, Fehmi
    RICERCHE DI MATEMATICA, 2025,
  • [14] Mittag-Leffler Stability of Impulsive Nonlinear Fractional-Order Systems with Time Delays
    Mathiyalagan, K.
    Ma, Yong-Ki
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (01) : 99 - 108
  • [15] Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems
    Yu, Jimin
    Hu, Hua
    Zhou, Shangbo
    Lin, Xiaoran
    AUTOMATICA, 2013, 49 (06) : 1798 - 1803
  • [16] Designing a switching law for Mittag-Leffler stability in nonlinear singular fractional-order systems and its applications in synchronization
    Hong, Duong Thi
    Thuan, Do Duc
    Thanh, Nguyen Truong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [17] Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel
    Abbas, Mohamed I.
    Ragusa, Maria Alessandra
    AIMS MATHEMATICS, 2022, 7 (11): : 20328 - 20340
  • [18] Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel
    Khan, Aziz
    Khan, Hasib
    Gomez-Aguilar, J. F.
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 422 - 427
  • [19] FRACTIONAL DIRAC SYSTEMS WITH MITTAG-LEFFLER KERNEL
    Allahverd, Bilender P.
    Tuna, Huseyin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 1 - 12
  • [20] Mittag-Leffler Stability of Homogeneous Fractional-Order Systems With Delay
    Lien, Nguyen Thi
    Hien, Le Van
    Thang, Nguyen Nhu
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3243 - 3248