Initial-Boundary Value Problems for the Coupled Higher-Order Nonlinear Schrodinger Equations on the Half-line

被引:39
作者
Hu, Bei-bei [1 ,2 ]
Xia, Tie-cheng [1 ]
Zhang, Ning [3 ]
Wang, Jin-bo [4 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou 239000, Anhui, Peoples R China
[3] Shandong Univ Sci & Technol, Dept Basical Courses, Tai An 271019, Shandong, Peoples R China
[4] Sci & Technol Commun Secur Lab, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; CHNLS equations; initial-boundary value problem; unified transform method; SOLITONS; TRANSFORM;
D O I
10.1515/ijnsns-2017-0080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we use the unified transform method to analyze the initial-boundary value problem for the coupled higher-order nonlinear Schrodinger equations on the half-line. Suppose that the solution {q(1)(x, t), q(2)(x, t)} exists, we show that it can be expressed in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter lambda.
引用
收藏
页码:83 / 92
页数:10
相关论文
共 36 条
[1]  
[Anonymous], 2013, P ROY SOC A-MATH PHY, DOI DOI 10.1098/RSPA.2013.0068
[2]   Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) :915-925
[3]   Quasi-particle theory of optical soliton interaction [J].
Biswas, Anjan ;
Konar, Swapan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (07) :1202-1228
[4]   A Riemann-Hilbert Approach for the Novikov Equation [J].
Boutet De Monvel, Anne ;
Shepelsky, Dmitry ;
Zielinski, Lech .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[5]   Peregrine solitons and algebraic soliton pairs in Kerr media considering space-time correction [J].
Chen, Shihua ;
Song, Lian-Yan .
PHYSICS LETTERS A, 2014, 378 (18-19) :1228-1232
[6]   Inverse scattering transform for the Degasperis-Procesi equation [J].
Constantin, Adrian ;
Ivanov, Rossen I. ;
Lenells, Jonatan .
NONLINEARITY, 2010, 23 (10) :2559-2575
[7]   Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides [J].
Dai, Chaoqing ;
Wang, Yueyue ;
Zhang, Xiaofei .
OPTICS EXPRESS, 2014, 22 (24) :29862-29867
[8]   A Riemann-Hilbert approach for the Degasperis-Procesi equation [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
NONLINEARITY, 2013, 26 (07) :2081-2107
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[10]  
Fokas A.S., 2008, SIAM, V78