A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions

被引:128
作者
Yang, Jianming [1 ]
Stern, Frederick [1 ]
机构
[1] Univ Iowa, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA
关键词
Fluid-structure interaction; Immersed boundary method; Direct forcing; Strong coupling; Predictor-corrector algorithm; Field extension; Moving boundary; Vortex-induced vibration; Galloping; Fluttering; Tumbling; Vortex shedding; OSCILLATING CIRCULAR-CYLINDER; NUMERICAL-SIMULATION; MOVING BOUNDARIES; FLOW; ALGORITHM; EQUATIONS; BODIES; HEART; FIELD;
D O I
10.1016/j.jcp.2012.04.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A direct forcing immersed boundary framework is presented for the simple and efficient simulation of strongly coupled fluid-structure interactions. The immersed boundary method developed by Yang and Balaras [J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J. Comput. Phys. 215 (1) (2006) 12-40] is greatly simplified by eliminating several complicated geometric procedures without sacrificing the overall accuracy. The fluid-structure coupling scheme of Yang et al. [J. Yang, S. Preidikman, E. Balaras, A strongly-coupled, embedded-boundary method for fluid-structure interactions of elastically mounted rigid bodies, J. Fluids Struct. 24 (2008) 167-182] is also significantly expedited by moving the fluid solver out of the predictor-corrector iterative loop without altering the strong coupling property. Central to these improvements are the reformulation of the field extension strategy and the evaluation of fluid force and moment exerted on the immersed bodies, by taking advantage of the direct forcing idea in a fractional-step method. Several cases with prescribed motions are examined first to validate the simplified field extension approach. Then, a variety of strongly coupled fluid-structure interaction problems, including vortex-induced vibrations of a circular cylinder, transverse and rotational galloping of rectangular bodies, and fluttering and tumbling of rectangular plates, are computed. The excellent agreement between the present results and the reference data from experiments and other simulations demonstrates the accuracy, simplicity, and efficiency of the new method and its applicability in a wide range of complicated fluid-structure interaction problems. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:5029 / 5061
页数:33
相关论文
共 50 条
  • [41] A lattice Boltzmann based implicit immersed boundary method for fluid-structure interaction
    Hao, Jian
    Zhu, Luoding
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 185 - 193
  • [42] Fluid-structure interaction method using immersed boundary and lattice Boltzmann method
    Liu, Ketong
    Tang, Aiping
    Liu, Yuejun
    Wang, Nan
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43 (01): : 61 - 66
  • [43] Immersed Boundary-Lattice Boltzmann Coupling Scheme for Fluid-Structure Interaction with Flexible Boundary
    Cheng, Yongguang
    Zhang, Hui
    Liu, Chang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (05) : 1375 - 1396
  • [44] A simple direct-forcing immersed boundary projection method with prediction-correction for fluid-solid interaction problems
    Horng, Tzyy-Leng
    Hsieh, Po-Wen
    Yang, Suh-Yuh
    You, Cheng-Shu
    COMPUTERS & FLUIDS, 2018, 176 : 135 - 152
  • [45] An extended iterative direct-forcing immersed boundary method in thermo-fluid problems with Dirichlet or Neumann boundary conditions
    Hosseinjani, Ali Akbar
    Ashrafizadeh, Ali
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2017, 24 (01) : 137 - 154
  • [46] Immersed Methods for High Reynolds Number Fluid-Structure Interactions
    Zhang, Lucy T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2017, 14 (06)
  • [47] An immersed-shell method for modelling fluid-structure interactions
    Vire, A.
    Xiang, J.
    Pain, C. C.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2035):
  • [48] A level set method for fluid-structure interactions with immersed surfaces
    Cottet, GH
    Maitre, E
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (03) : 415 - 438
  • [49] Direct-forcing immersed boundary lattice Boltzmann simulation of particle/fluid interactions for spherical and non-spherical particles
    Eshghinejadfard, A.
    Abdelsamie, A.
    Janiga, G.
    Thevenin, D.
    PARTICUOLOGY, 2016, 25 : 93 - 103
  • [50] A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid-structure interaction problems
    Zeng, Xianyi
    Farhat, Charbel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (07) : 2892 - 2923