A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION

被引:114
作者
Reich, Brian J. [1 ]
Shaby, Benjamin A. [2 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27560 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
Gaussian extreme value process; generalized extreme value distribution; positive stable distribution; regional climate model; BAYESIAN-INFERENCE; LIKELIHOOD;
D O I
10.1214/12-AOAS591
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Extreme environmental phenomena such as major precipitation events manifestly exhibit spatial dependence. Max-stable processes are a class of asymptotically-justified models that are capable of representing spatial dependence among extreme values. While these models satisfy modeling requirements, they are limited in their utility because their corresponding joint likelihoods are unknown for more than a trivial number of spatial locations, preventing, in particular, Bayesian analyses. In this paper, we propose a new random effects model to account for spatial dependence. We show that our specification of the random effect distribution leads to a max-stable process that has the popular Gaussian extreme value process (GEVP) as a limiting case. The proposed model is used to analyze the yearly maximum precipitation from a regional climate model.
引用
收藏
页码:1430 / 1451
页数:22
相关论文
共 42 条
[1]  
Banerjee S., 2003, Hierarchical modeling and analysis for spatial data
[2]   Stationary process approximation for the analysis of large spatial datasets [J].
Banerjee, Sudipto ;
Gelfand, Alan E. ;
Finley, Andrew O. ;
Sang, Huiyan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :825-848
[3]   SPATIAL MODELING OF EXTREME SNOW DEPTH [J].
Blanchet, Juliette ;
Davison, Anthony C. .
ANNALS OF APPLIED STATISTICS, 2011, 5 (03) :1699-1725
[4]   ON SPATIAL EXTREMES: WITH APPLICATION TO A RAINFALL PROBLEM [J].
Buishand, T. A. ;
de Haan, L. ;
Zhou, C. .
ANNALS OF APPLIED STATISTICS, 2008, 2 (02) :624-642
[5]  
COLES SG, 1993, J ROY STAT SOC B MET, V55, P797
[6]  
Cooley D., 2006, LECT NOTES STAT, V187, P373, DOI [DOI 10.1007/0-387-36062-X_17, 10.1007/0-387-36062-X17]
[7]   Bayesian spatial modeling of extreme precipitation return levels [J].
Cooley, Daniel ;
Nychka, Douglas ;
Naveau, Philippe .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) :824-840
[8]  
Cressie N., 1993, Statistics for Spatial Data, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
[9]   Fixed rank kriging for very large spatial data sets [J].
Cressie, Noel ;
Johannesson, Gardar .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :209-226
[10]  
DE HAAN L., 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3