Automating three-dimensional osteoarthritis histopathological grading of human osteochondral tissue using machine learning on contrast-enhanced micro-computed tomography

被引:13
作者
Rytky, S. J. O. [1 ]
Tiulpin, A. [1 ,2 ]
Frondelius, T. [1 ]
Finnila, M. A. J. [1 ,3 ]
Karhula, S. S. [1 ,3 ]
Leino, J. [1 ]
Pritzker, K. P. H. [4 ,5 ]
Valkealahti, M. [6 ]
Lehenkari, P. [3 ,6 ,7 ]
Joukainen, A. [8 ]
Kroger, H. [8 ]
Nieminen, H. J. [1 ,9 ]
Saarakkala, S. [1 ,2 ]
机构
[1] Univ Oulu, Res Unit Med Imaging Phys & Technol, POB 5000, FI-90014 Oulu, Finland
[2] Oulu Univ Hosp, Dept Diagnost Radiol, Oulu, Finland
[3] Univ Oulu, Med Res Ctr, Oulu, Finland
[4] Univ Toronto, Dept Lab Med & Patho Biol, Surg, Toronto, ON, Canada
[5] Mt Sinai Hosp, Toronto, ON, Canada
[6] Oulu Univ Hosp, Dept Surg & Intens Care, Oulu, Finland
[7] Univ Oulu, Fac Med, Canc & Translat Med Res Unit, Oulu, Finland
[8] Kuopio Univ Hosp, Dept Orthopaed Traumatol & Hand Surg, Kuopio, Finland
[9] Aalto Univ, Dept Neurosci & Biomed Engn, Espoo, Finland
基金
欧洲研究理事会; 芬兰科学院;
关键词
Osteoarthritis; 3D histopathological grading; Contrast-enhanced micro-computed tomography; Machine learning; Cartilage; Textural analysis; CARTILAGE HISTOPATHOLOGY; ARTICULAR-CARTILAGE; QUANTITATIVE CHARACTERIZATION; AIDED DIAGNOSIS; CLASSIFICATION; SYSTEM; IMAGES; MRI;
D O I
10.1016/j.joca.2020.05.002
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: To develop and validate a machine learning (ML) approach for automatic three-dimensional (3D) histopathological grading of osteochondral samples imaged with contrast-enhanced microcomputed tomography (CE mu CT). Design: A total of 79 osteochondral cores from 24 total knee arthroplasty patients and two asymptomatic donors were imaged using CE mu CT with phosphotungstic acid-staining. Volumes-of-interest (VOI) in surface (SZ), deep (DZ) and calcified (CZ) zones were extracted depth-wise and subjected to dimensionally reduced Local Binary Pattern-textural feature analysis. Regularized linear and logistic regression (LR) models were trained zone-wise against the manually assessed semi-quantitative histopathological CEmCT grades (diameter = 2 mm samples). Models were validated using nested leave-one-out crossvalidation and an independent test set (4 mm samples). The performance was primarily assessed using Mean Squared Error (MSE) and Average Precision (AP, confidence intervals are given in square brackets). Results: Highest performance on cross-validation was observed for SZ, both on linear regression (MSE = 0.49, 0.69 and 0.71 for SZ, DZ and CZ, respectively) and LR (AP = 0.9 [0.77-0.99], 0.46 [0.28-0.67] and 0.65 [0.41-0.85] for SZ, DZ and CZ, respectively). The test set evaluations yielded increased MSE on all zones. For LR, the performance was also best for the SZ (AP = 0.85 [0.73-0.93], 0.82 [0.70-0.92] and 0.8 [0.67-0.9], for SZ, DZ and CZ, respectively). Conclusion: We present the first ML-based automatic 3D histopathological osteoarthritis (OA) grading method which also adequately perform on grading unseen data, especially in SZ. After further development, the method could potentially be applied by OA researchers since the grading software and all source codes are publicly available. (c) 2020 The Author(s). Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/ licenses/by/4.0/).
引用
收藏
页码:1133 / 1144
页数:12
相关论文
共 50 条
[1]   Facilitating Tumor Functional Assessment by Spatially Relating 3D Tumor Histology and In Vivo MRI: Image Registration Approach [J].
Alic, Lejla ;
Haeck, Joost C. ;
Bol, Karin ;
Klein, Stefan ;
van Tiel, Sandra T. ;
Wielepolski, Piotr A. ;
de Jong, Marion ;
Niessen, Wiro J. ;
Bernsen, Monique ;
Veenland, Jifke F. .
PLOS ONE, 2011, 6 (08)
[2]   Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging [J].
Ashinsky, B. G. ;
Coletta, C. E. ;
Bouhrara, M. ;
Lukas, V. A. ;
Boyle, J. M. ;
Reiter, D. A. ;
Neu, C. P. ;
Goldberg, I. G. ;
Spencer, R. G. .
OSTEOARTHRITIS AND CARTILAGE, 2015, 23 (10) :1704-1712
[3]   Predicting Early Symptomatic Osteoarthritis in the Human Knee Using Machine Learning Classification of Magnetic Resonance Images From the Osteoarthritis Initiative [J].
Ashinsky, Beth G. ;
Bouhrara, Mustapha ;
Coletta, Christopher E. ;
Lehallier, Benoit ;
Urish, Kenneth L. ;
Lin, Ping-Chang ;
Goldberg, Ilya G. ;
Spencer, Richard G. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2017, 35 (10) :2243-2250
[4]   Hyperopt: A Python library for model selection and hyperparameter optimization [J].
Bergstra, James ;
Komer, Brent ;
Eliasmith, Chris ;
Yamins, Dan ;
Cox, David D .
Computational Science and Discovery, 2015, 8 (01)
[5]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[6]  
CHOI G, 2018, J BIOPHOTONICS, V11
[7]   Early diagnosis to enable early treatment of pre-osteoarthritis [J].
Chu, Constance R. ;
Williams, Ashley A. ;
Coyle, Christian H. ;
Bowers, Megan E. .
ARTHRITIS RESEARCH & THERAPY, 2012, 14 (03)
[8]   Reliability, reproducibility and variability of the traditional Histologic/Histochemical Grading System vs the new OARSI Osteoarthritis Cartilage Histopathology Assessment System [J].
Custers, R. J. H. ;
Creemers, L. B. ;
Verbout, A. J. ;
van Rijen, M. H. P. ;
Dhert, W. J. A. ;
Saris, D. B. F. .
OSTEOARTHRITIS AND CARTILAGE, 2007, 15 (11) :1241-1248
[9]  
Davila J, 2006, INTERPERSONAL, COGNITIVE, AND SOCIAL NATURE OF DEPRESSION, P23
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848