Generating Jacobi forms

被引:2
作者
Skogman, H [1 ]
机构
[1] SUNY Coll Brockport, Dept Math, Brockport, NY 14420 USA
关键词
Jacobi forms; vector-valued modular forms;
D O I
10.1007/s11139-005-4853-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we explore the relationship between vector-valued modular forms and Jacobi forms and give explicit relations over various congruence subgroups. The main result is that a Jacobi form of square-free index on the full Jacobi group is uniquely determined by any of the associated vector components. In addition, an explicit construction is given to determine the other vector components from this single component. In other words, we give an explicit construction of a Jacobi form from a subset of its Fourier coefficients. This leads to results about how the transformation properties are affected by congruence restrictions on the Fourier expansion.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 14 条
[1]  
Berndt B.C., 1998, GAUSS JACOBI SUMS
[2]  
Eichler M., 1985, THEORY JACOBI FORMS
[3]  
Hannay J. H., 1980, Physica D, V1D, P267, DOI 10.1016/0167-2789(80)90026-3
[5]   CHARACTERS OF BINARY MODULAR CONGRUENCE GROUP [J].
KUTZKO, PC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (04) :702-704
[6]  
MORTON P, 1980, J NUMBER THEORY, V12, P122, DOI 10.1016/0022-314X(80)90083-9
[7]   REPRESENTATIONS OF SL(2,Z-P LAMBDA Z) AND THETA FUNCTIONS .1. [J].
NOBS, A ;
WOLFART, J .
MATHEMATISCHE ZEITSCHRIFT, 1974, 138 (03) :239-254
[8]   The bearing of multiple theta seria on modulus substitution. [J].
Schoeneberg, B .
MATHEMATISCHE ANNALEN, 1939, 116 :511-523
[9]  
Schoeneberg B, 1974, ELLIPTIC MODULAR FUN
[10]  
SCHUR I, 1921, COLLECT WORKS, V2, P327