ABUNDANCE OF C1-ROBUST HOMOCLINIC TANGENCIES

被引:45
作者
Bonatti, Christian [1 ]
Diaz, Lorenzo J. [2 ]
机构
[1] Inst Math Bourgogne, F-21078 Dijon, France
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio de Janeiro, Brazil
关键词
DIFFEOMORPHISMS; HYPERBOLICITY; DIMENSION; DYNAMICS; SYSTEMS; SETS;
D O I
10.1090/S0002-9947-2012-05445-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffeomorphism f has a C-1-robust homoclinic tangency if there is a C-1-neighborhood U of f such that every diffeomorphism in g is an element of U has a hyperbolic set Lambda(g), depending continuously on g, such that the stable and unstable le manifolds of Lambda(g), have some non-transverse intersection. For every manifold of dimension greater than or equal to three we exhibit a local mechanism (blender-horseshoes) generating diffeomorphisms with C-1-robust homoclinic tangencies. Using blender-horseshoes, we prove that homoclinic classes of C-1-generic diffeomorphisms containing saddles with different indices and that do not admit dominated splittings (of appropriate dimensions) display C-1-robust homoclinic tangencies.
引用
收藏
页码:5111 / 5148
页数:38
相关论文
共 33 条
  • [1] Periodic points and homoclinic classes
    Abdenur, F.
    Bonatti, Ch.
    Crovisier, S.
    Diaz, L. J.
    Wen, L.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1 - 22
  • [2] Generic diffeomorphisms on compact surfaces
    Abdenur, F
    Bonatti, C
    Crovisier, S
    Díaz, LJ
    [J]. FUNDAMENTA MATHEMATICAE, 2005, 187 (02) : 127 - 159
  • [3] ABRAHAM R, 1968, P S PURE MATH, V14
  • [4] [Anonymous], 1970, Global analysis
  • [5] Asaoka M, 2008, P AM MATH SOC, V136, P677
  • [6] THE DYNAMICS OF THE HENON MAP
    BENEDICKS, M
    CARLESON, L
    [J]. ANNALS OF MATHEMATICS, 1991, 133 (01) : 73 - 169
  • [7] Bonatti C, 2003, ASTERISQUE, P187
  • [8] Recurrence and genericty
    Bonatti, C
    Crovisier, S
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (01) : 33 - 104
  • [9] Persistent nonhyperbolic transitive diffeomorphisms
    Bonatti, C
    Diaz, LJ
    [J]. ANNALS OF MATHEMATICS, 1996, 143 (02) : 357 - 396
  • [10] A C1-generic dichotomy for diffeomorphisms:: Weak forms of hyperbolicity or infinitely many sinks or sources
    Bonatti, C
    Díaz, LJ
    Pujals, ER
    [J]. ANNALS OF MATHEMATICS, 2003, 158 (02) : 355 - 418