Microlocal analysis and multiwavelets

被引:0
|
作者
Ashino, R [1 ]
Heil, C [1 ]
Nagase, M [1 ]
Vaillancourt, R [1 ]
机构
[1] Osaka Kyoiku Univ, Osaka 5828582, Japan
来源
GEOMETRY ANALYSIS AND APPLICATIONS | 2001年
关键词
multiwavelet; microlocal analysis; pseudodifferential operators; prefilter;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multiwavelets come with several scaling functions. Microlocal filtering is done with adapted orthonormal multiwavelets, which can be considered as the action of pseudodifferential operators whose symbols are characteristic functions of disjoint sets in Fourier space. Expansion of functions or signals in terms of an orthonormal multiwavelet basis gives a rough estimate of their microlocal content. Prefilters, which can be represented in terms of the n-D Hilbert transform, are designed and a fast algorithm is considered.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [1] Microlocal filtering with multiwavelets
    Ashino, R
    Heil, C
    Nagase, M
    Vaillancourt, R
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (1-2) : 111 - 133
  • [2] Microlocal analysis for Gelfand–Shilov spaces
    Luigi Rodino
    Patrik Wahlberg
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2379 - 2420
  • [3] Microlocal analysis and applications
    Cordero, E
    Nicola, F
    Rodino, L
    ADVANCES IN PSEUDO-DIFFERENTIAL OPERATORS, 2004, 155 : 1 - 17
  • [4] Microlocal analysis for Gelfand-Shilov spaces
    Rodino, Luigi
    Wahlberg, Patrik
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2379 - 2420
  • [5] Microlocal analysis of scattering data for nested conormal potentials
    Eswarathasan, Suresh
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (05) : 2100 - 2141
  • [6] Microlocal analysis in nonlinear thermoelasticity
    Wang, YG
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) : 683 - 705
  • [7] MICROLOCAL ANALYSIS OF A SPINDLE TRANSFORM
    Webber, James W.
    Holman, Sean
    INVERSE PROBLEMS AND IMAGING, 2019, 13 (02) : 231 - 261
  • [8] Generalized Gevrey Ultradistributions and their Microlocal Analysis
    Benmeriem, Khaled
    Bouzar, Chikh
    PSEUDO-DIFFERENTIAL OPERATORS: ANALYSIS, APPLICATIONS AND COMPUTATIONS, 2011, 213 : 235 - 250
  • [9] Applications of Microlocal Analysis in Inverse Problems
    Salo, Mikko
    MATHEMATICS, 2020, 8 (07)
  • [10] MICROLOCAL ANALYSIS OF BOREHOLE SEISMIC DATA
    Felea, Raluca
    Gaburro, Romina
    Greenleaf, Allan
    Nolan, Clifford
    INVERSE PROBLEMS AND IMAGING, 2022,