Sparse Edge Visual Odometry using an RGB-D Camera

被引:0
|
作者
Hsu, Jhih-Lei [1 ]
Lin, Huei-Yung [1 ,2 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621, Taiwan
[2] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621, Taiwan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a sparse visual odometry model for RGB-D cameras, which minimizes the photometric errors over dispersed edge points. In contrast to the feature-based methods, we use cells to extract the features on the edge images. This allows us to maintain the robustness of the information and make the computation more efficient. Furthermore, the different degree of exposure is represented as a posterior probability in each feature points. We can adjust the weights to improve the pose according to the probability. Since the estimate might not be accurate due to the feature points affected by sensor noise, we use the geometry and mixture distribution to update the depth values. The PnP algorithm is then used to adjust the pose again and reduce the camera drift in the front-end process. Experiments are carried out using public datasets to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:964 / 969
页数:6
相关论文
共 50 条
  • [41] Visual Odometry Algorithm Using an RGB-D Sensor and IMU in a Highly Dynamic Environment
    Kim, Deok-Hwa
    Han, Seung-Beom
    Kim, Jong-Hwan
    ROBOT INTELLIGENCE TECHNOLOGY ANDAPPLICATIONS 3, 2015, 345 : 11 - 26
  • [42] Robustness to Lighting Variations: An RGB-D Indoor Visual Odometry Using Line Segments
    Lu, Yan
    Song, Dezhen
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 688 - 694
  • [43] Novel View Synthesis for Sparse RGB-D camera networks
    Anh Minh Truong
    Philips, Wilfried
    Deligiannis, Nikos
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [44] Visual Inertial Odometry-Based Gait Analysis Using Waist-Attached RGB-D Camera and Inertial Sensors
    Dang, Duc Cong
    Suh, Young Soo
    IEEE SENSORS JOURNAL, 2023, 23 (03) : 2539 - 2549
  • [45] Keyframe-Based RGB-D Visual-Inertial Odometry and Camera Extrinsic Calibration Using Extended Kalman Filter
    Chu, Chengbing
    Yang, Shidong
    IEEE SENSORS JOURNAL, 2020, 20 (11) : 6130 - 6138
  • [46] A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM
    Handa, Ankur
    Whelan, Thomas
    McDonald, John
    Davison, Andrew J.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 1524 - 1531
  • [47] Bi-objective Optimization for Robust RGB-D Visual Odometry
    Han, Tao
    Xu, Chao
    Loxton, Ryan
    Xie, Lei
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1837 - 1844
  • [48] Improved Visual Odometry System Based on Kinect RGB-D Sensor
    Liu, Shen-Ho
    Hsu, Chen-Chien
    Wang, Wei-Yen
    Chen, Mei-Yung
    Wang, Yin-Tien
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2017, : 29 - 30
  • [49] PLVO: Plane-line-based RGB-D Visual Odometry
    Sun Q.-X.
    Yuan J.
    Zhang X.-B.
    Gao Y.-X.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (10): : 2060 - 2072
  • [50] ADAPTIVE RGB-D VISUAL ODOMETRY FOR MOBILE ROBOTS: AN EXPERIMENTAL STUDY
    Anderson, J. Wesley
    Fabian, Joshua R.
    Clayton, Garrett M.
    PROCEEDINGS OF THE ASME 8TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2015, VOL 3, 2016,