Current and Future Multimodal Learning Analytics Data Challenges

被引:9
|
作者
Spikol, Daniel [1 ]
Prieto, Luis P. [2 ]
Rodriguez-Triana, M. J. [3 ]
Worsley, Marcelo [4 ]
Ochoa, Xavier [5 ]
Cukurova, Mutlu [6 ]
Vogel, Bahtijar [1 ]
Ruffaldi, Emanuele [7 ]
Ringtved, Ulla Lunde [8 ]
机构
[1] Malmo Univ, Malmo, Sweden
[2] Tallinn Univ, Tallinn, Estonia
[3] Ecole Polytech Fed Lausanne, REACT Grp, Lausanne, Switzerland
[4] Northwestern Univ, Evanston, IL USA
[5] ESPOL, Guayaquil, Ecuador
[6] UCL Knowledge Lab, London, England
[7] Scuola Super Sant Anna, Pisa, Italy
[8] Univ Coll Nordjylland, Aalborg, Denmark
来源
SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17) | 2017年
关键词
Multimodal learning analytics; datasets; challenges;
D O I
10.1145/3027385.3029437
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Multimodal Learning Analytics (MMLA) captures, integrates and analyzes learning traces from different sources in order to obtain a more holistic understanding of the learning process, wherever it happens. MMLA leverages the increasingly widespread availability of diverse sensors, high-frequency data collection technologies and sophisticated machine learning and artificial intelligence techniques. The aim of this workshop is twofold: first, to expose participants to, and develop, different multimodal datasets that reflect how MMLA can bring new insights and opportunities to investigate complex learning processes and environments; second, to collaboratively identify a set of grand challenges for further MMLA research, built upon the foundations of previous workshops on the topic.
引用
收藏
页码:518 / 519
页数:2
相关论文
共 50 条
  • [1] Multimodal Learning Analytics Data Challenges
    Ochoa, Xavier
    Worsley, Marcelo
    Weibel, Nadir
    Oviatt, Sharon
    LAK '16 CONFERENCE PROCEEDINGS: THE SIXTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE,, 2016, : 498 - 499
  • [2] Big Data Machine Learning and Graph Analytics: Current State and Future Challenges
    Huang, H. Howie
    Liu, Hang
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014,
  • [3] Multimodal Learning Analytics - Enabling the Future of Learning through Multimodal Data Analysis and Interfaces
    Worsley, Marcelo
    ICMI '12: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2012, : 353 - 356
  • [4] The promise and challenges of multimodal learning analytics
    Cukurova, Mutlu
    Giannakos, Michail
    Martinez-Maldonado, Roberto
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2020, 51 (05) : 1441 - 1449
  • [5] Teaching Analytics: Current Challenges and Future Development
    Hoyos, Abel A. Castro
    Velasquez, Juan D.
    IEEE REVISTA IBEROAMERICANA DE TECNOLOGIAS DEL APRENDIZAJE-IEEE RITA, 2020, 15 (01): : 1 - 9
  • [6] Graph BI & Analytics: Current State and Future Challenges
    Ghrab, Amine
    Romero, Oscar
    Jouili, Salim
    Skhiri, Sabri
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2018), 2018, 11031 : 3 - 18
  • [7] LEARNING ANALYTICS IN ONLINE LANGUAGE LEARNING: CHALLENGES AND FUTURE DIRECTIONS
    Thomas, M.
    EDULEARN16: 8TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2016, : 7065 - 7065
  • [8] YarnSense: Automated Data Storytelling for Multimodal Learning Analytics
    Fernández-Nieto, Gloria Milena (gloriamilena.fernandeznieto@monash.edu), 1600, CEUR-WS (3667):
  • [9] Multimodal Data Fusion in Learning Analytics: A Systematic Review
    Mu, Su
    Cui, Meng
    Huang, Xiaodi
    SENSORS, 2020, 20 (23) : 1 - 27
  • [10] Data and Analytics Challenges for a Learning Healthcare System
    Basole, Rahul C.
    Braunstein, Mark L.
    Sun, Jimeng
    ACM JOURNAL OF DATA AND INFORMATION QUALITY, 2015, 6 (2-3):