New half-discrete Hilbert inequalities for three variables

被引:10
作者
Batbold, Tserendorj [1 ]
Azar, Laith E. [2 ]
机构
[1] Natl Univ Mongolia, Dept Math, Ulaanbaatar 14201, Mongolia
[2] Al Al Bayt Univ, Dept Math, POB 130095, Mafraq, Jordan
关键词
Hilbert inequality; half-discrete inequality; the best possible constant; equivalent form;
D O I
10.1186/s13660-017-1594-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain two new half-discrete Hilbert inequalities for three variables. The obtained inequalities are with the best constant factor. Moreover, we give their equivalent forms.
引用
收藏
页数:15
相关论文
共 19 条
[1]   On several new Hilbert-type inequalities involving means operators [J].
Adiyasuren, Vandanjav ;
Batbold, Tserendorj ;
Krnic, Mario .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (08) :1493-1514
[2]   ON A SHARPER FORM OF HALF-DISCRETE HILBERT INEQUALITY [J].
Azar, L. E. .
TAMKANG JOURNAL OF MATHEMATICS, 2014, 45 (01) :77-85
[3]   TWO NEW FORMS OF HILBERT INTEGRAL INEQUALITY [J].
Azar, L. E. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03) :937-946
[4]  
Azar L.E., 2013, J INEQUAL APPL, V1, P452
[5]  
Azar LE, 2014, J EGYPT MATH SOC, V22, P254
[6]  
Batbold T, 2018, J MATH INEQ IN PRESS
[7]   SHARP BOUNDS FOR m-LINEAR HILBERT-TYPE OPERATORS ON THE WEIGHTED MORREY SPACES [J].
Batbold, Tserendorj ;
Sawano, Yoshihiro .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01) :263-283
[8]  
Gao MZ, 1998, P AM MATH SOC, V126, P751
[9]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[10]  
Krnic M, 2005, MATH INEQUAL APPL, V8, P29