A framework for indoor localization using the magnetic field

被引:2
|
作者
Kok, Manon [1 ]
Viset, Frida [1 ]
Osman, Mostafa [1 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
来源
2022 23RD IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2022) | 2022年
基金
荷兰研究理事会;
关键词
Indoor localization; magnetic field; SLAM; inertial sensors;
D O I
10.1109/MDM55031.2022.00086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, our focus is on indoor localization using the indoor magnetic field as a source of position information. This relies on the fact that ferromagnetic materials inside buildings cause the magnetic field to vary spatially. We jointly estimate the pose of a combined sensor module (containing a magnetometer) as well as the magnetic field map. We show that our previously developed algorithm for magnetic field-based simultaneous localization and mapping can be adapted and extended into a general framework where a multitude of measurements can be included. We exemplify this using a foot-mounted inertial measurement unit where we additionally assume the availability of range measurements.
引用
收藏
页码:385 / 387
页数:3
相关论文
共 50 条
  • [41] Indoor Localization Using FM Signals
    Chen, Yin
    Lymberopoulos, Dimitrios
    Liu, Jie
    Priyantha, Bodhi
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2013, 12 (08) : 1502 - 1517
  • [42] Indoor Localization using Solar Cells
    Rizk, Hamada
    Ma, Dong
    Hassan, Mahbub
    Youssef, Moustafa
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [43] Indoor Localization Using A Smart PhoneAC
    Zhang, Rui
    Bannoura, Amir
    Hoeflinger, Fabian
    Reindl, Leonhard M.
    Schindelhauer, Christian
    2013 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2013, : 38 - 42
  • [44] Hybrid Indoor Localization Using IMU Sensors and Smartphone Camera
    Poulose, Alwin
    Han, Dong Seog
    SENSORS, 2019, 19 (23)
  • [45] A multisource and multivariate dataset for indoor localization methods based on WLAN and geo-magnetic field fingerprinting
    Barsocchi, Paolo
    Crivello, Antonino
    La Rosa, Davide
    Palumbo, Filippo
    2016 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2016,
  • [46] Comparing the Performance of Indoor Localization Systems through the EvAAL Framework
    Potorti, Francesco
    Park, Sangjoon
    Jimenez Ruiz, Antonio Ramon
    Barsocchi, Paolo
    Girolami, Michele
    Crivello, Antonino
    Lee, So Yeon
    Lim, Jae Hyun
    Torres-Sospedra, Joaquin
    Seco, Fernando
    Montoliu, Raul
    Martin Mendoza-Silva, German
    Perez Rubio, Maria Del Carmen
    Losada-Gutierrez, Cristina
    Espinosa, Felipe
    Macias-Guarasa, Javier
    SENSORS, 2017, 17 (10)
  • [47] REFLoc: A Resilient Evolutionary Fusion Framework for Robust Indoor Localization
    Chen, Huilin
    Zhang, Li
    Li, Danyang
    Xu, Jingao
    Yang, Weiqi
    Yang, Zheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [48] A Novel Simultaneous Calibration and Localization Algorithm Framework for Indoor Scenarios
    Li, Shuangzhi
    Deng, Zhongliang
    Liu, Yanxu
    Hu, Enwen
    IEEE ACCESS, 2020, 8 (08): : 180100 - 180112
  • [49] LearnLoc: A Framework for Smart Indoor Localization with Embedded Mobile Devices
    Pasricha, Sudeep
    Ugave, Viney
    Anderson, Charles W.
    Han, Qi
    2015 INTERNATIONAL CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM SYNTHESIS (CODES+ISSS), 2015, : 37 - 44
  • [50] Comparative assessment of an indoor localization framework for building emergency response
    Li, Nan
    Becerik-Gerber, Burcin
    Soibelman, Lucio
    Krishnamachari, Bhaskar
    AUTOMATION IN CONSTRUCTION, 2015, 57 : 42 - 54