Integral type contractions in modular metric spaces

被引:18
作者
Azadifar, Bahareh [1 ]
Sadeghi, Ghadir [1 ]
Saadati, Reza [2 ]
Park, Choonkil [3 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, Sabzevar, Iran
[2] Iran Univ Sci & Technol, Dept Math, Tehran, Iran
[3] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年
关键词
modular metric space; compatible maps; contractive inequality of integral type; fixed point; FIXED-POINT THEOREMS; MAPPINGS;
D O I
10.1186/1029-242X-2013-483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of a common fixed point of compatible mappings of integral type in modular metric spaces.
引用
收藏
页数:14
相关论文
共 14 条
  • [1] Branciari A., 2002, Int J Math Math Sci, V29, P531, DOI [10.1155/S0161171202007524, DOI 10.1155/S0161171202007524]
  • [2] Modular metric spaces, I: Basic concepts
    Chistyakov, Vyacheslav V.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) : 1 - 14
  • [3] Hewitt E., 1978, Real and Abstract Analysis
  • [4] COMMUTING MAPPINGS AND FIXED-POINTS
    JUNGCK, G
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (04) : 261 - 263
  • [5] Jungck G., 1986, Int. J. Math. Sci., V9, P771, DOI DOI 10.1155/S0161171286000935
  • [6] Kaneko H., 1989, Int. J. Math. Math. Sci., V12, P257, DOI 10.1155/S0161171289000293
  • [7] Fixed point theorems for mappings satisfying contractive conditions of integral type and applications
    Liu, Zeqing
    Li, Xin
    Kang, Shin Min
    Cho, Sun Young
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2011, : 1 - 18
  • [8] Razani A, 2009, B IRAN MATH SOC, V35, P11
  • [9] Berinde mappings in orbitally complete metric spaces
    Samet, Bessem
    Vetro, Calogero
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (12) : 1075 - 1079
  • [10] An Integral Version of A†iriA‡'s Fixed Point Theorem
    Samet, Bessem
    Vetro, Calogero
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (01) : 225 - 238