Implementation of fractional-order electromagnetic potential through a genetic algorithm

被引:32
|
作者
Jesus, Isabel S. [1 ]
Machado, J. A. Tenreiro [1 ]
机构
[1] Inst Engn Porto, Dept Electrotech Engn, P-4200072 Oporto, Portugal
关键词
Electrical potential; Fractional-order systems; Electromagnetism; Multipoles; Genetic algorithms; Optimization;
D O I
10.1016/j.cnsns.2008.08.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1838 / 1843
页数:6
相关论文
共 50 条
  • [21] Application of Genetic Algorithms in the Design of an Electrical Potential of Fractional Order
    Jesus, Isabel S.
    Tenreiro Machado, J. A.
    Barbosa, Ramiro S.
    NONLINEAR SCIENCE AND COMPLEXITY, 2011, : 273 - 280
  • [22] Analysis, Control and FPGA Implementation of a Fractional-Order Modified Shinriki Circuit
    Rajagopal, Karthikeyan
    Nazarimehr, Fahimeh
    Guessas, Laarem
    Karthikeyan, Anitha
    Srinivasan, Ashokkumar
    Jafari, Sajad
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2019, 28 (14)
  • [23] Optimal Fractional-order Sliding Mode Controller Design for a class of Fractional-order Nonlinear Systems using particle swarm optimization Algorithm
    Abdelhamid, Djari
    Toufik, Bouden
    Vinagre, Blas M.
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2016, 18 (04): : 14 - 25
  • [24] Fractional-Order Optimal Control of Fractional-Order Linear Vibration Systems with Time Delay
    Balochian, Saeed
    Rajaee, Nahid
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2018, 7 (03) : 72 - 93
  • [25] The effect of the fractional-order controller's orders variation on the fractional-order control systems
    Zeng, QS
    Cao, GY
    Zhu, XJ
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 367 - 372
  • [26] Fractional Order Robust Controller for Fractional-Order Interval Plants
    Mihaly, Vlad
    Susca, Mircea
    Dulf, Eva H.
    Morar, Dora
    Dobra, Petru
    IFAC PAPERSONLINE, 2022, 55 (25): : 151 - 156
  • [27] A New Reduced-Order Implementation of Discrete-Time Fractional-Order PID Controller
    Stanislawski, Rafal
    Rydel, Marek
    Li, Zhixiong
    IEEE ACCESS, 2022, 10 : 17417 - 17429
  • [28] Image Edge Detection Based on Fractional-Order Ant Colony Algorithm
    Liu, Xinyu
    Pu, Yi-Fei
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [29] Chaotic Dynamics and FPGA Implementation of a Fractional-Order Chaotic System With Time Delay
    Sayed, Wafaa S.
    Roshdy, Merna
    Said, Lobna A.
    Radwan, Ahmed G.
    IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 (01): : 255 - 262
  • [30] Dynamic Analysis and FPGA Implementation of Fractional-Order Hopfield Networks with Memristive Synapse
    Anzo-Hernandez, Andres
    Zambrano-Serrano, Ernesto
    Platas-Garza, Miguel Angel
    Volos, Christos
    FRACTAL AND FRACTIONAL, 2024, 8 (11)