A proximal alternating linearization method for nonconvex optimization problems

被引:6
|
作者
Li, Dan [1 ]
Pang, Li-Ping [1 ]
Chen, Shuang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
nonconvex optimization; nonsmooth optimization; alternating linearization algorithm; proximal point; prox-regular; lower-C-2; function; 90C25; 90C30; 49J52; 49M27; 49M37; VARIABLE-METRIC METHOD; CONVEX FUNCTION; REGULAR FUNCTIONS; BUNDLE METHOD; SUM; DECOMPOSITION; MINIMIZATION; ALGORITHM;
D O I
10.1080/10556788.2013.854358
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on the problems of minimizing the sum of two nonsmooth functions which are possibly nonconvex. These problems arise in many applications of practical interests. We present a proximal alternating linearization algorithm which alternately generates two approximate proximal points of the original objective function. It is proved that the accumulation points of iterations converge to a stationary point of the problem. Numerical experiments validate the theoretical convergence analysis and verify the implementation of the proposed algorithm.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [41] A proximal bundle method for nonsmooth nonconvex functions with inexact information
    W. Hare
    C. Sagastizábal
    M. Solodov
    Computational Optimization and Applications, 2016, 63 : 1 - 28
  • [42] AN INEXACT REGULARIZED PROXIMAL NEWTON-TYPE METHOD FOR NONCONVEX COMPOSITE OPTIMIZATION PROBLEMS
    Zhu, Danqi
    Wu, Can
    Lit, Dong-Hui
    PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (04): : 629 - 644
  • [43] Alternating Linearization for Structured Regularization Problems
    Lin, Xiaodong
    Pham, Minh
    Ruszczynski, Andrzej
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3447 - 3481
  • [44] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Xu, Jiawei
    Chao, Miantao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1757 - 1783
  • [45] A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems
    Sempere, Gregorio M.
    de Oliveira, Welington
    Royset, Johannes O.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 204 (03)
  • [46] An extended proximal ADMM algorithm for three-block nonconvex optimization problems
    Zhang, Chun
    Song, Yongzhong
    Cai, Xingju
    Han, Deren
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 398 (398)
  • [47] An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) : 600 - 616
  • [48] An Alternating Augmented Lagrangian method for constrained nonconvex optimization
    Galvan, G.
    Lapucci, M.
    Levato, T.
    Sciandrone, M.
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (03) : 502 - 520
  • [49] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Jian Lv
    Li-Ping Pang
    Fan-Yun Meng
    Journal of Global Optimization, 2018, 70 : 517 - 549
  • [50] Proximal point method for a special class of nonconvex multiobjective optimization functions
    Bento, G. C.
    Ferreira, O. P.
    Sousa Junior, V. L.
    OPTIMIZATION LETTERS, 2018, 12 (02) : 311 - 320