A proximal alternating linearization method for nonconvex optimization problems

被引:6
|
作者
Li, Dan [1 ]
Pang, Li-Ping [1 ]
Chen, Shuang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
nonconvex optimization; nonsmooth optimization; alternating linearization algorithm; proximal point; prox-regular; lower-C-2; function; 90C25; 90C30; 49J52; 49M27; 49M37; VARIABLE-METRIC METHOD; CONVEX FUNCTION; REGULAR FUNCTIONS; BUNDLE METHOD; SUM; DECOMPOSITION; MINIMIZATION; ALGORITHM;
D O I
10.1080/10556788.2013.854358
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we focus on the problems of minimizing the sum of two nonsmooth functions which are possibly nonconvex. These problems arise in many applications of practical interests. We present a proximal alternating linearization algorithm which alternately generates two approximate proximal points of the original objective function. It is proved that the accumulation points of iterations converge to a stationary point of the problem. Numerical experiments validate the theoretical convergence analysis and verify the implementation of the proposed algorithm.
引用
收藏
页码:771 / 785
页数:15
相关论文
共 50 条
  • [1] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Tang, Chunming
    Lv, Jinman
    Jian, Jinbao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Chunming Tang
    Jinman Lv
    Jinbao Jian
    Journal of Inequalities and Applications, 2018
  • [3] An inertial proximal alternating direction method of multipliers for nonconvex optimization
    Chao, M. T.
    Zhang, Y.
    Jian, J. B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1199 - 1217
  • [4] A REDISTRIBUTED PROXIMAL BUNDLE METHOD FOR NONCONVEX OPTIMIZATION
    Hare, Warren
    Sagastizabal, Claudia
    SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (05) : 2442 - 2473
  • [5] AN ALTERNATING LINEARIZATION BUNDLE METHOD FOR A CLASS OF NONCONVEX OPTIMIZATION PROBLEM WITH INEXACT INFORMATION
    Gao, Hui
    Lv, Jian
    Wang, Xiaoliang
    Pang, Liping
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (02) : 805 - 825
  • [6] An Alternating Proximal Splitting Method with Global Convergence for Nonconvex Structured Sparsity Optimization
    Zhang, Shubao
    Qian, Hui
    Gong, Xiaojin
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2330 - 2336
  • [7] A new alternating direction method for linearly constrained nonconvex optimization problems
    Wang, X. Y.
    Li, S. J.
    Kou, X. P.
    Zhang, Q. F.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 695 - 709
  • [8] AN ALTERNATING LINEARIZATION METHOD WITH INEXACT DATA FOR BILEVEL NONSMOOTH CONVEX OPTIMIZATION
    Li, Dan
    Pang, Li-Ping
    Guo, Fang-Fang
    Xia, Zun-Quan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (03) : 859 - 869
  • [9] A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information
    Lv, Jian
    Pang, Li-Ping
    Meng, Fan-Yun
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (03) : 517 - 549
  • [10] DC Proximal Newton for Nonconvex Optimization Problems
    Rakotomamonjy, Alain
    Flamary, Remi
    Gasso, Gilles
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (03) : 636 - 647