The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells

被引:99
|
作者
Noh, Ho-Sung [1 ]
Yoon, Kyung Joong [1 ]
Kim, Byung-Kook [1 ]
Je, Hae-June [1 ]
Lee, Hae-Weon [1 ]
Lee, Jong-Ho [1 ]
Son, Ji-Won [1 ]
机构
[1] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 136791, South Korea
基金
新加坡国家研究基金会;
关键词
Solid oxide fuel cell; Thin-film electrolyte; Nanostructure electrode; Pulsed-laser deposition; Anode support; Low-temperature performance; PULSED-LASER DEPOSITION; PERFORMANCE; SOFC; MEMBRANES; MICROSTRUCTURE; TEMPERATURE; FABRICATION; CATHODES; COMPOSITE; DIFFUSION;
D O I
10.1016/j.jpowsour.2013.08.072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin-film electrolytes and nanostructured electrodes are essential components for lowering the operation temperature of solid oxide fuel cells (SOFCs); however, reliably implementing thin-film electrolytes and nano-structure electrodes over a realistic SOFC platform, such as a porous anode-support, has been extremely difficult. If these components can be created reliably and reproducibly on porous substrates as anode supports, a more precise assessment of their impact on realistic SOFCs would be possible. In this work, structurally sound thin-film and nano-structured SOFC components consisting of a nanocomposite NiO-yttria-stabilized zirconia (YSZ) anode interlayer, a thin YSZ and gadolinia-doped ceria (GDC) bi-layer electrolyte, and a nano-structure lanthanum strontium cobaltite (LSC)-base cathode, are sequentially fabricated on a porous NiO-YSZ anode support using thin-film technology. Using an optimized cell testing setup makes possible a more exact investigation of the potential and challenges of thin-film electrolyte and nanostructured electrode-based anode-supported SOFCs. Peak power densities obtained at 500 degrees C surpass 500 mW cm(-2), which is an unprecedented low-temperature performance for the YSZ-based anode-supported SOFC. It is found that this critical, low-temperature performance for the anode-supported SOFC depends more on the electrode performance than the resistance of the thin-film electrolyte during lower temperature operation. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [21] Enhancement of oxygen reduction reaction kinetics using infiltrated yttria-stabilized zirconia interlayers at the electrolyte/electrode interfaces of solid oxide fuel cells
    Koo, Ja Yang
    Mun, Taeeun
    Lee, Jongseo
    Choi, Mingi
    Kim, Seo Ju
    Lee, Wonyoung
    JOURNAL OF POWER SOURCES, 2020, 472
  • [22] Operation of anode-supported thin electrolyte film solid oxide fuel cells at 800°C and below
    de Haart, LGJ
    Mayer, K
    Stimming, U
    Vinke, IC
    JOURNAL OF POWER SOURCES, 1998, 71 (1-2) : 302 - 305
  • [23] A simple, rapid spray method for preparing anode-supported solid oxide fuel cells with GDC electrolyte thin films
    Ding, Changsheng
    Lin, Hongfei
    Sato, Kazuhisa
    Hashida, Toshiyuki
    JOURNAL OF MEMBRANE SCIENCE, 2010, 350 (1-2) : 1 - 4
  • [24] Ionic conductivity of plasma-sprayed nanocrystalline yttria-stabilized zirconia electrolyte for solid oxide fuel cells
    Chen, Y.
    Omar, S.
    Keshri, A. K.
    Balani, K.
    Babu, K.
    Nino, J. C.
    Seal, S.
    Agarwal, A.
    SCRIPTA MATERIALIA, 2009, 60 (11) : 1023 - 1026
  • [25] Synthesis and characterization of nanocrystalline yttria-stabilized zirconia for an electrolyte in a solid-oxide fuel cell
    Kim, S. H.
    Jin, G. Y.
    Kim, M.
    Yang, Y. S.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (06) : 980 - 983
  • [26] Sandwiched ultra-thin yttria-stabilized zirconia layer to effectively and reliably block reduction of thin-film gadolinia-doped ceria electrolyte
    Noh, Ho-Sung
    Hong, Jongsup
    Kim, Hyoungchul
    Yoon, Kyung Joong
    Lee, Jong-Ho
    Kim, Byung-Kook
    Son, Ji-Won
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2015, 123 (1436) : 263 - 267
  • [27] A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells
    Yang, Jun
    Molouk, Ahmed Fathi Salem
    Okanishi, Takeou
    Muroyama, Hiroki
    Matsui, Toshiaki
    Eguchi, Koichi
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (51) : 28701 - 28707
  • [28] Preparation of yttria-stabilized zirconia electrolyte via atmospheric plasma spraying for metal-supported solid oxide fuel cells
    Du, Ke
    Song, Chen
    Liu, Min
    Liu, Taikai
    Wen, Kui
    Liao, Hanlin
    Yang, Chenghao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1133 - 1141
  • [29] Fabrication of (Sm, Ce)O2-δ interlayer for yttria-stabilized zirconia-based intermediate temperature solid oxide fuel cells
    Qian, Jing
    Hou, Jie
    Tao, Zetian
    Liu, Wei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 631 : 255 - 260
  • [30] Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process
    Liu, Q. L.
    Khor, Khiam Aik
    Chan, S. H.
    Chen, X. J.
    JOURNAL OF POWER SOURCES, 2006, 162 (02) : 1036 - 1042