Plasticizing Silk Protein for On-Skin Stretchable Electrodes

被引:318
作者
Chen, Geng [1 ]
Matsuhisa, Naoji [1 ]
Liu, Zhiyuan [1 ,2 ]
Qi, Dianpeng [1 ]
Cai, Pingqiang [1 ]
Jiang, Ying [1 ]
Wan, Changjin [1 ]
Cui, Yajing [1 ]
Leow, Wan Ru [1 ]
Liu, Zhuangjian
Gong, Suxuan [3 ]
Zhang, Ke-Qin [4 ]
Cheng, Yuan [2 ]
Chen, Xiaodong [1 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices iFLEX, 50 Nanyang Ave, Singapore 639798, Singapore
[2] ASTAR, Inst High Performance Comp, 1 Fusionopolis Way,16-16 Connexis North, Singapore 138632, Singapore
[3] Procter & Gamble, Singapore Innovat Ctr, 70 Biopolis St, Singapore 138547, Singapore
[4] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
基金
新加坡国家研究基金会;
关键词
biomaterials; molecular dynamics simulations; on-skin electronics; silk proteins; stretchable electronics; MECHANICAL-PROPERTIES; FIBROIN; MEMORY; FILMS; FABRICATION; LIGHTWEIGHT; STRENGTH; SYSTEMS; DESIGN; BONDS;
D O I
10.1002/adma.201800129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Soft and stretchable electronic devices are important in wearable and implantable applications because of the high skin conformability. Due to the natural biocompatibility and biodegradability, silk protein is one of the ideal platforms for wearable electronic devices. However, the realization of skin-conformable electronic devices based on silk has been limited by the mechanical mismatch with skin, and the difficulty in integrating stretchable electronics. Here, silk protein is used as the substrate for soft and stretchable on-skin electronics. The original high Young's modulus (5-12 GPa) and low stretchability (<20%) are tuned into 0.1-2 MPa and > 400%, respectively. This plasticization is realized by the addition of CaCl2 and ambient hydration, whose mechanism is further investigated by molecular dynamics simulations. Moreover, highly stretchable (>100%) electrodes are obtained by the thin-film metallization and the formation of wrinkled structures after ambient hydration. Finally, the plasticized silk electrodes, with the high electrical performance and skin conformability, achieve on-skin electrophysiological recording comparable to that by commercial gel electrodes. The proposed skin-conformable electronics based on biomaterials will pave the way for the harmonized integration of electronics into human.
引用
收藏
页数:7
相关论文
共 65 条
[11]   25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress [J].
Hammock, Mallory L. ;
Chortos, Alex ;
Tee, Benjamin C-K ;
Tok, Jeffrey B-H ;
Bao, Zhenan .
ADVANCED MATERIALS, 2013, 25 (42) :5997-6037
[12]   A Physically Transient Form of Silicon Electronics [J].
Hwang, Suk-Won ;
Tao, Hu ;
Kim, Dae-Hyeong ;
Cheng, Huanyu ;
Song, Jun-Kyul ;
Rill, Elliott ;
Brenckle, Mark A. ;
Panilaitis, Bruce ;
Won, Sang Min ;
Kim, Yun-Soung ;
Song, Young Min ;
Yu, Ki Jun ;
Ameen, Abid ;
Li, Rui ;
Su, Yewang ;
Yang, Miaomiao ;
Kaplan, David L. ;
Zakin, Mitchell R. ;
Slepian, Marvin J. ;
Huang, Yonggang ;
Omenetto, Fiorenzo G. ;
Rogers, John A. .
SCIENCE, 2012, 337 (6102) :1640-1644
[13]   Green and biodegradable electronics [J].
Irimia-Vladu, Mihai ;
Glowacki, Eric D. ;
Voss, Gundula ;
Bauer, Siegfried ;
Sariciftci, Niyazi Serdar .
MATERIALS TODAY, 2012, 15 (7-8) :340-346
[14]  
Isabelle S., 2016, NANOTECHNOLOGY, V27
[15]   Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics [J].
Jeong, Jae-Woong ;
Yeo, Woon-Hong ;
Akhtar, Aadeel ;
Norton, James J. S. ;
Kwack, Young-Jin ;
Li, Shuo ;
Jung, Sung-Young ;
Su, Yewang ;
Lee, Woosik ;
Xia, Jing ;
Cheng, Huanyu ;
Huang, Yonggang ;
Choi, Woon-Seop ;
Bretl, Timothy ;
Rogers, John A. .
ADVANCED MATERIALS, 2013, 25 (47) :6839-6846
[16]   Chitin Nanofiber Transparent Paper for Flexible Green Electronics [J].
Jin, Jungho ;
Lee, Daewon ;
Im, Hyeon-Gyun ;
Han, Yun Cheol ;
Jeong, Eun Gyo ;
Rolandi, Marco ;
Choi, Kyung Cheol ;
Bae, Byeong-Soo .
ADVANCED MATERIALS, 2016, 28 (26) :5169-+
[17]   High-performance green flexible electronics based on biodegradable cellulose nanofibril paper [J].
Jung, Yei Hwan ;
Chang, Tzu-Hsuan ;
Zhang, Huilong ;
Yao, Chunhua ;
Zheng, Qifeng ;
Yang, Vina W. ;
Mi, Hongyi ;
Kim, Munho ;
Cho, Sang June ;
Park, Dong-Wook ;
Jiang, Hao ;
Lee, Juhwan ;
Qiu, Yijie ;
Zhou, Weidong ;
Cai, Zhiyong ;
Gong, Shaoqin ;
Ma, Zhenqiang .
NATURE COMMUNICATIONS, 2015, 6
[18]   An ultra-lightweight design for imperceptible plastic electronics [J].
Kaltenbrunner, Martin ;
Sekitani, Tsuyoshi ;
Reeder, Jonathan ;
Yokota, Tomoyuki ;
Kuribara, Kazunori ;
Tokuhara, Takeyoshi ;
Drack, Michael ;
Schwoediauer, Reinhard ;
Graz, Ingrid ;
Bauer-Gogonea, Simona ;
Bauer, Siegfried ;
Someya, Takao .
NATURE, 2013, 499 (7459) :458-+
[19]  
Keten S, 2010, NAT MATER, V9, P359, DOI [10.1038/nmat2704, 10.1038/NMAT2704]
[20]  
Kim DH, 2010, NAT MATER, V9, P511, DOI [10.1038/NMAT2745, 10.1038/nmat2745]