Polyethylene Glycol 20000-Supported Zero-Valent Iron Nanoparticle for Removal of Pb(II) from Aqueous Solutions: Characteristics, Kinetic and Thermodynamic Studies

被引:7
|
作者
He, Qi [1 ]
Dai, Jiali [1 ]
Zhu, Liang [1 ]
Li, Shaofeng [2 ]
Xiao, Kaijun [1 ]
Yin, Yurong [3 ]
机构
[1] South China Univ Technol, Sch Light Ind & Food Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] Shenzhen Polytech, Inst Bldg & Environm, Shenzhen 518055, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Environm & Energy, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron Nanoparticle; PEG-20000; Pb(II) Removal; Kinetic; RAY PHOTOELECTRON-SPECTROSCOPY; CORE-SHELL STRUCTURE; WASTE-WATER; FLY-ASH; ADSORPTION; LEAD; SEQUESTRATION; CARBON; COPPER; IONS;
D O I
10.1166/sam.2016.2994
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The purpose of this work was to investigate the effects of polyethylene glycol 20000 (PEG-20000) as surfactant to support zero-valent iron nanoparticles (ZVIN) for Pb(II) removal. In this study, PEG-20000 supported ZVIN (PEG-ZVIN) were prepared. Their properties were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffractometry and Brunauer-Emmett-Teller analysis. Then, the material was used to remove Pb(II) from aqueous solutions. The appropriate Fe/PEG ratio (200 mg/L), pH (5.5-6.1) and Pb(II) concentrations (lower than 100 mg/L) for this reaction were identified by bath experiment. Additionally, X-ray photoelectron spectroscopy was used to analyze the reaction mechanism. The data indicated that the developed material had a "shell-core" structure. Subsequently, kinetic models, isotherms and thermodynamic models were used to fit the behavior of the reaction process. These analyses suggested that the process of Pb(II) removal could mainly occur through a spontaneously slow chemical adsorption with valence force through electrons sharing or exchanging between adsorbate and adsorbent. The study indicated that PEG-20000 had a positive effects on the prepared ZVIN, and PEG-ZVIN can be used as a promising candidate for Pb(II) removal from aqueous solutions.
引用
收藏
页码:1878 / 1886
页数:9
相关论文
共 50 条
  • [41] Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests
    Wang, Shengsen
    Gao, Bin
    Li, Yuncong
    Creamer, Anne Elise
    He, Feng
    JOURNAL OF HAZARDOUS MATERIALS, 2017, 322 : 172 - 181
  • [42] Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron
    Jiali Xu
    Yilian Li
    Chen Jing
    Hucheng Zhang
    Yu Ning
    Journal of Radioanalytical and Nuclear Chemistry, 2014, 299 : 329 - 336
  • [43] Removal of Ni(II) from aqueous solutions by sulfide-modified nanoscale zero-valent iron supported by hydroxyapatite (HAP/S-nZVI)
    Xu, Hui
    Chen, Minzhang
    Zhang, Yajuan
    Chen, Pengdong
    Chen, Yong
    DESALINATION AND WATER TREATMENT, 2021, 232 : 149 - 164
  • [44] Effective removal of nitrate by palygorskite-supported nanoscale zero-valent iron from aqueous solution
    Ma, Gui
    Zhao, Tiaobin
    Meng, Kai
    Bi, Kexin
    Tian, Xia
    Niu, Lele
    Lei, Zhenle
    Zhang, Mengjie
    Li, Min
    Dai, Liang
    DESALINATION AND WATER TREATMENT, 2024, 320
  • [45] Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron
    Xu, Jiali
    Li, Yilian
    Jing, Chen
    Zhang, Hucheng
    Ning, Yu
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2014, 299 (01) : 329 - 336
  • [46] Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism
    Zhang, Xin
    Lin, Shen
    Chen, Zuliang
    Megharaj, Mallavarapu
    Naidu, Ravendra
    WATER RESEARCH, 2011, 45 (11) : 3481 - 3488
  • [47] Pencil graphite supported nano zero-valent iron for removal of levofloxacin from aqueous solution: Effects of pH, kinetic and biological activity
    Idrees, Abdulla S.
    Sulaiman, Saleh M.
    Al-Jabari, Mohammed H.
    Nazal, Mazen K.
    Mubarak, Asem M.
    Al-Rimawi, Leena N.
    ARABIAN JOURNAL OF CHEMISTRY, 2022, 15 (12)
  • [48] Nanoscale zero-valent iron for the removal of Zn2+, Zn(II)-EDTA and Zn(II)-citrate from aqueous solutions
    Krzisnik, Nina
    Mladenovic, Ana
    Skapin, Andrijana Sever
    Skrlep, Luka
    Scancar, Janez
    Milacic, Radmila
    SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 476 : 20 - 28
  • [49] Nanoscale Zero-Valent Iron Supported on Graphene Novel Adsorbent for the Removal of Diazo Direct Red 81 from Aqueous Solution: Isotherm, Kinetics, and Thermodynamic Studies
    Manesh, Maryam Iran
    Sohrabi, Mahmoud Reza
    Nik, Saeed Mortazavi
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2022, 41 (06): : 1844 - 1855
  • [50] REMOVAL OF Cd(II) FROM GROUNDWATER USING SYNTHESIZED SEPIOLITE SUPPORTED NANOSCALE ZERO-VALENT IRON
    Yang, Ying-Pin
    Xu, Zhen
    Fu, Rong-Bing
    Guo, Xiao-Pin
    Bi, Dong-Su
    ENERGY, ENVIRONMENTAL & SUSTAINABLE ECOSYSTEM DEVELOPMENT, 2016,