Efficient Inverted Planar Perovskite Solar Cells Using Ultraviolet/Ozone-Treated NiOx as the Hole Transport Layer

被引:111
|
作者
Wang, Tun [1 ]
Ding, Dong [1 ]
Zheng, Hao [1 ]
Wang, Xin [1 ]
Wang, Jiayuan [1 ]
Liu, Hong [1 ]
Shen, Wenzhong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ,Inst Solar Energy, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
关键词
hole transport layer; nickel oxide; perovskite solar cells; ultraviolet-ozone treatment; OPEN-CIRCUIT VOLTAGE; HIGHLY EFFICIENT; AIR-STABILITY; THIN-FILMS; TEMPERATURE; PERFORMANCE; INTERFACE; FABRICATION; HYSTERESIS; TRANSPARENT;
D O I
10.1002/solr.201900045
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nickel oxide (NiOx) has exhibited great potential as a hole transport layer (HTL) for fabricating efficient and stable perovskite solar cells (PSCs). However, it has been greatly limited by its fabrication and manipulation process. In this work, a simple processing method on an ultrathin electrochemical mesoporous NiOx film manipulated by controllable ultraviolet/ozone (UVO) treatmentis employed; the duration of UVO treatment on the NiOx film significantly affects the photovoltaic properties of the PSCs. When the exposure duration increases, the wettability, electrical conductivity, nonstoichiometry, and valence band energy of the NiOx film are improved with varying degrees. Besides, the perovskite grain size, recombination resistance at the perovskite/NiOx interface, and build-in potential of the device also increase, resulting in higher short-circuit current density (J(SC)) and open-circuit voltage (V-OC). Combining these factors together, an optimal exposure time of UVO treatment on the NiOx film has been achieved at 5 min, which results in a significantly high performance with an efficiency of 19.67%, large V-OC (>1.1 V), and J(SC) (>23 mA cm(-2)). Furthermore, the experimental results are coincide well with simulation results on the different corresponding subjects. Hopefully, this work could facilitate material manipulation toward scalable, high efficiency, and stable solar cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Solution-processable nickel-chromium ternary oxide as an efficient hole transport layer for inverted planar perovskite solar cells
    Zheng, Yichu
    Ge, Bing
    Zheng, Li Rong
    Hou, Yu
    Yang, Shuang
    Yang, Hua Gui
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (38) : 21792 - 21798
  • [42] Inverted planar organic-inorganic hybrid perovskite solar cells with NiOx hole-transport layers as light-in window
    Chen, Wei
    Wu, Yinghui
    Tu, Bao
    Liu, Fangzhou
    Djurisic, Aleksandra B.
    He, Zhubing
    APPLIED SURFACE SCIENCE, 2018, 451 : 325 - 332
  • [43] Fabrication of inverted planar perovskite solar cells using the iodine/ethanol solution method for copper iodide as a hole transport layer
    Mahdy, Belal
    Isomura, Masao
    Kaneko, Tetsuya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SK)
  • [44] Inverted perovskite solar cells based on potassium salt-modified NiOX hole transport layers
    Liu, Xinyi
    Qiao, Hong Wei
    Chen, Mengjiong
    Ge, Bing
    Yang, Shuang
    Hou, Yu
    Yang, Hua Gui
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (09) : 3614 - 3620
  • [45] Recent progress in inverted perovskite solar cells employing nickel oxide (NiOx) as a hole transport materials
    Kumar, Anjan
    Singh, Sangeeta
    Yadav, Anupam
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 5827 - 5832
  • [46] Efficient and Stable Inverted Perovskite Solar Cells with Graphene Oxide-Modified Hole Transport Layer
    Chen, Yuanyuan
    Cheng, Zhendong
    Qiao, Feiyang
    Gao, Chao
    Zhang, Dezhao
    Wang, Yangrunqian
    Wang, Xin
    Liang, Jinjin
    Liu, Hong
    Shen, Wenzhong
    ENERGY TECHNOLOGY, 2022, 10 (11)
  • [47] Conjugated Polyelectrolyte Combined with Ionic Liquid as the Hole Transport Layer for Efficient Inverted Perovskite Solar Cells
    Jian, Hongmei
    Chen, Hao
    He, Ling
    Zhao, Chengjie
    Chen, Jiang
    Jiu, Tonggang
    Tao, Guo-Hong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
  • [48] Boosting Performance of Inverted Perovskite Solar Cells by Diluting Hole Transport Layer
    Yang, Xiude
    Lv, Feng
    Yao, Yanqing
    Li, Ping
    Wu, Bo
    Xu, Cunyun
    Zhou, Guangdong
    NANOMATERIALS, 2022, 12 (22)
  • [49] Solution-processed Sr-doped NiOx as hole transport layer for efficient and stable perovskite solar cells
    Zhang, Jiankai
    Mao, Wujian
    Hou, Xian
    Duan, Jiaji
    Zhou, Jianping
    Huang, Sumei
    Wei Ou-Yang
    Zhan, Xuehua
    Sun, Zhuo
    Chen, Xiaohong
    SOLAR ENERGY, 2018, 174 : 1133 - 1141
  • [50] Hole Transport Bilayer for Highly Efficient and Stable Inverted Perovskite Solar Cells
    Javaid, Hamza
    Duzhko, Volodimyr V.
    Venkataraman, D.
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 72 - 80