Invariant cones and convex sets for bilinear control systems and parabolic type of semigroups

被引:4
作者
Do Rocio, O. G.
San Martin, L. A. B.
Santana, A. J.
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[2] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
controllability; bilinear systems; invariant cones; semigroups; invariant control sets;
D O I
10.1007/s10450-006-0007-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies invariant cones for bilinear control systems and relates them to the controllability of the system. The full picture is provided by the parabolic type of a semigroup.
引用
收藏
页码:419 / 432
页数:14
相关论文
共 12 条
[1]  
BARROS CJB, 1996, PROYECCIONES-ANTOFAG, V15, P111
[2]   TRANSITIVITY PROBLEM FROM CONTROL-THEORY [J].
BOOTHBY, WM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) :296-307
[3]   Connected components of open semigroups in semi-simple Lie groups [J].
do Rocio, OG ;
San Martin, LAB .
SEMIGROUP FORUM, 2004, 69 (01) :1-29
[4]   On invariant orthants of bilinear systems [J].
Sachkov Yu.L. .
Journal of Dynamical and Control Systems, 1998, 4 (1) :137-147
[5]  
San Martin L. A. B., 1998, J LIE THEORY, V8, P111
[6]  
San Martin L.A.B., 2001, T AM MATH SOC, V353, P5165
[7]   The homotopy type of Lie semigroups in semi-simple Lie groups [J].
San Martin, LAB ;
Santana, AJ .
MONATSHEFTE FUR MATHEMATIK, 2002, 136 (02) :151-173
[8]   Nonexistence of invariant semigroups in affine symmetric spaces [J].
San Martin, LAB .
MATHEMATISCHE ANNALEN, 2001, 321 (03) :587-600
[9]  
San Martin LAB, 2001, SYST CONTROL LETT, V43, P53, DOI 10.1016/S0167-6911(01)00095-0
[10]  
SANMARTIN L, 1993, MATH CONTROL SIGNAL, V6, P41, DOI 10.1007/BF01213469