Nanostructured Ni-YSZ by Atomic Layer Deposition

被引:9
作者
Cui, Xiaodan [1 ]
Zdunek, Alan D. [1 ]
Jursich, Gregory [2 ,3 ]
Takoudis, Christos G. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[3] Univ Illinois, Dept Chem, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
GLANCING ANGLE DEPOSITION; OXIDE FUEL-CELL; MICROSTRUCTURE; PERFORMANCE; ANODES; FILMS; WATER;
D O I
10.1149/2.0121512jss
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nickel yttria-stabilized zirconia (Ni-YSZ) is used as anode material for solid oxide fuel cells (SOFCs). The electrochemical performance of Ni-YSZ anodes can be improved when the size of constituent particles of nickel is reduced. However, at SOFC high temperature operating environments, nano-sized Ni particles suffer from sintering. Nanoscale Ni-YSZ anodes can undergo severe structure changes. In this work, a unique approach of fabricating a nanostructured Ni-YSZ anode is demonstrated by combining atomic layer deposition (ALD) and glancing angle deposition (GLAD) techniques whereby nickel nanoparticle sintering is prevented at high temperatures with as thin as 1.9 nm YSZ ALD coating on the nickel; the surface area of the resulting Ni-YSZ anode was found to increase more than 3 times that of a planar electrode. In addition, the novel ALD/GLAD coating approach used here provides an ionic conductive YSZ electrolyte phase combined with an electrical conductive Ni phase whereby porosity can be controlled through deposition and post-deposition annealing. In addition, the surface roughness of Ni-YSZ anode decreases with increasing YSZ coating layer thickness and it is unaffected by the post-deposition annealing process. Conductivity measurements of the Ni-YSZ anodes at room temperature show a resistivity in the order of 10(-4) cm.S-1. (C) 2015 The Electrochemical Society. All rights reserved.
引用
收藏
页码:P429 / P435
页数:7
相关论文
共 31 条
[1]   Influence of hydrogen annealing on the properties of hafnium oxide thin films [J].
Al-Kuhaili, M. F. ;
Durrani, S. M. A. ;
Bakhtiari, I. A. ;
Dastageer, M. A. ;
Mekki, M. B. .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 126 (03) :515-523
[2]  
Alrashid M. S. Ebtihaj, THESIS
[3]   Advanced anodes for high-temperature fuel cells [J].
Atkinson, A ;
Barnett, S ;
Gorte, RJ ;
Irvine, JTS ;
Mcevoy, AJ ;
Mogensen, M ;
Singhal, SC ;
Vohs, J .
NATURE MATERIALS, 2004, 3 (01) :17-27
[4]   Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy. Analysis of Pt/YSZ and LSM/YSZ electrodes [J].
Barbucci, A ;
Bozzo, R ;
Cerisola, G ;
Costamagna, P .
ELECTROCHIMICA ACTA, 2002, 47 (13-14) :2183-2188
[5]   Adhesion tension values of different types of carbon black against water and against benzene [J].
Bartell, FE ;
Smith, CN .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1929, 21 :1102-1106
[6]   Intermediate temperature solid oxide fuel cells [J].
Brett, Daniel J. L. ;
Atkinson, Alan ;
Brandon, Nigel P. ;
Skinner, Stephen J. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (08) :1568-1578
[7]   Oxide anode materials for solid oxide fuel cells [J].
Fergus, Jeffrey W. .
SOLID STATE IONICS, 2006, 177 (17-18) :1529-1541
[8]   Atomic Layer Deposition Functionalized Composite SOFC Cathode La0.6Sr0.4Fe0.8Co0.2O3-δ -Gd0.2Ce0.8O1.9: Enhanced Long-Term Stability [J].
Gong, Yunhui ;
Patel, Rajankumar L. ;
Liang, Xinhua ;
Palacio, Diego ;
Song, Xueyan ;
Goodenough, John B. ;
Huang, Kevin .
CHEMISTRY OF MATERIALS, 2013, 25 (21) :4224-4231
[9]   Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell [J].
Haslam, JJ ;
Pham, AQ ;
Chung, BW ;
DiCarlo, JF ;
Glass, RS .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (03) :513-518
[10]   Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films [J].
Hawkeye, Matthew M. ;
Brett, Michael J. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2007, 25 (05) :1317-1335