Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals

被引:24
|
作者
Foerster, Aguida [1 ,2 ]
Dutta, Anirban [3 ]
Kuo, Min-Fang [2 ]
Paulus, Walter [1 ]
Nitsche, Michael A. [2 ,4 ]
机构
[1] Georg August Univ, Univ Med Gottingen, Dept Clin Neurophysiol, Gottingen, Germany
[2] Leibniz Inst Arbeitsforsch, Deptartment Psychol & Neurosci, Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany
[3] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY USA
[4] Univ Med Hosp Bergmannsheil, Dept Neurol, Bochum, Germany
关键词
biofeedback; motor task; neuromodulation; transcranial direct current stimulation; NONINVASIVE BRAIN-STIMULATION; MAGNETIC STIMULATION; SPINAL-CORD; EXCITABILITY; TDCS; STROKE; CONSOLIDATION; PLASTICITY; SEQUENCE; ENHANCEMENT;
D O I
10.1111/ejn.13866
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique which alters motor functions in healthy humans and in neurological patients. Most studies so far investigated the effects of tDCS on mechanisms underlying improvements in upper limb performance. To investigate the effect of anodal tDCS over the lower limb motor cortex (M1) on lower limb motor learning in healthy volunteers, we conducted a randomized, single-blind and sham-controlled study. Thirty-three (25.81 +/- 3.85, 14 female) volunteers were included, and received anodal or sham tDCS over the left M1 (M1-tDCS); 0.0625mA/cm(2) anodal tDCS was applied for 15min during performance of a visuo-motor task (VMT) with the right leg. Motor learning was monitored for performance speed and accuracy based on electromyographic recordings. We also investigated the influence of electrode size and baseline responsivity to transcranial magnetic stimulation (TMS) on the stimulation effects. Relative to baseline measures, only M1-tDCS applied with small electrodes and in volunteers with high baseline sensitivity to TMS significantly improved VMT performance. The computational analysis showed that the small anode was more specific to the targeted leg motor cortex volume when compared to the large anode. We conclude that anodal M1-tDCS modulates VMT performance in healthy subjects. As these effects critically depend on sensitivity to TMS and electrode size, future studies should investigate the effects of intensified tDCS and/or model-based different electrode positions in low-sensitivity TMS individuals.
引用
收藏
页码:779 / 789
页数:11
相关论文
共 50 条
  • [31] Enhancement of Cortical Excitability and Lower Limb Motor Function in Patients With Stroke by Transcranial Direct Current Stimulation
    Chang, Min Cheol
    Kim, Dae Yul
    Park, Dae Hwan
    BRAIN STIMULATION, 2015, 8 (03) : 561 - 566
  • [32] Variability in Response to Transcranial Direct Current Stimulation of the Motor Cortex
    Wiethoff, Sarah
    Hamada, Masashi
    Rothwell, John C.
    BRAIN STIMULATION, 2014, 7 (03) : 468 - 475
  • [33] The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis
    Hashemirad, Fahimeh
    Zoghi, Maryam
    Fitzgerald, Paul B.
    Jaberzadeh, Shapour
    BRAIN AND COGNITION, 2016, 102 : 1 - 12
  • [34] Modulation of cortical activity after anodal transcranial direct current stimulation of the lower limb motor cortex: A functional MRI study
    Kim, Chung Reen
    Kim, Dae-Yul
    Kim, Lee Suk
    Chun, Min Ho
    Kim, Sang Joon
    Park, Chang Hyun
    BRAIN STIMULATION, 2012, 5 (04) : 462 - 467
  • [35] After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats
    Koo, Ho
    Kim, Min Sun
    Han, Sang Who
    Paulus, Walter
    Nitche, Michael A.
    Kim, Yun-Hee
    Kim, Hyoung-Ihl
    Ko, Sung-Hwa
    Shin, Yong-Il
    RESTORATIVE NEUROLOGY AND NEUROSCIENCE, 2016, 34 (05) : 859 - 868
  • [36] Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex
    Jefferson, Samantha
    Mistry, Satish
    Singh, Salil
    Rothwell, John
    Hamdy, Shaheen
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2009, 297 (06): : G1035 - G1040
  • [37] Comparison of the After-Effects of Transcranial Direct Current Stimulation Over the Motor Cortex in Patients With Stroke and Healthy Volunteers
    Suzuki, Kanjiro
    Fujiwara, Toshiyuki
    Tanaka, Naofumi
    Tsuji, Tetsuya
    Masakado, Yoshihisa
    Hase, Kimitaka
    Kimura, Akio
    Liu, Meigen
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2012, 122 (11) : 675 - 681
  • [38] Anodal transcranial Direct Current Stimulation over the cerebellum and primary motor cortex improves tardive dyskinesia: A pilot study
    Boechat-Barros, Raphael
    von Glehn, Felipe P.
    Correa, Thiago Xavier
    Brasil-Neto, Joaquim P.
    BRAIN STIMULATION, 2022, 15 (02) : 488 - 490
  • [39] Can genetic polymorphisms predict response variability to anodal transcranial direct current stimulation of the primary motor cortex?
    Pellegrini, Michael
    Zoghi, Maryam
    Jaberzadeh, Shapour
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2021, 53 (05) : 1569 - 1591
  • [40] The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke
    Fleming, Melanie K.
    Rothwell, John C.
    Sztriha, Laszlo
    Teo, James T.
    Newham, Di J.
    CLINICAL NEUROPHYSIOLOGY, 2017, 128 (07) : 1389 - 1398