Glutamate as a modulator of embryonic and adult neurogenesis

被引:103
作者
Schlett, Katalin [1 ]
机构
[1] Eotvos Lorand Univ, Dept Physiol & Neurobiol, H-1117 Budapest, Hungary
关键词
proliferation; neural precursor cell commitment; neural stem cell; ionotropic Glu receptors; metabotropic Glu receptors; Glu transporters;
D O I
10.2174/156802606777323665
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
It has been widely accepted that neurogenesis continues throughout life. Neural stem cells can be found in the ventricular zone of the embryonic and in restricted regions of the adult central nervous System, including subventricular and subgranular zones of the hippocampal dentate gyrus. The network of signaling mechanisms determining whether neural stem cells remain in a proliferative state or differentiate is only partly discovered. Recent advances indicate that glutamate (Glu), the predominant excitatory neurotransmitter in mature neurons, can influence immature neural cell proliferation and differentiation, as well. Despite many similarities, Glu actions on neurogenesis in the developing and adult brain show distinct differences and are far from being clear. Due to alterations of Glu transport mechanisms, extracellular Glu level is high in the embryonic CNS. Glu acts non-synaptically on dividing progenitors either by directly activating ionotropic and/or metabotropic Glu receptors or can influence other cells which are located in the vicinity of proliferating cells and produce molecules regulating neural precursor cell proliferation by other mechanisms. Due to the complexity of signaling pathways and to regional differences in neural precursors, Glu can influence proliferation and neuronal commitment as well, and acts as a positive regulator of neurogenesis. Brain injuries like ischemia, epilepsy or stress lead to severe neuronal death and additionally, influence neurogenesis, as well. Glu homeostasis is altered under these pathological circumstances, implying that therapeutic treatments mediating Glu signaling might be useful to increase neuronal replacement after cell loss in the brain.
引用
收藏
页码:949 / 960
页数:12
相关论文
共 187 条
[1]   Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy [J].
Allen, NJ ;
Káradóttir, R ;
Attwell, D .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2004, 449 (02) :132-142
[2]   AMPA receptor potentiators as novel antidepressants [J].
Alt, A ;
Witkin, JM ;
Bleakman, D .
CURRENT PHARMACEUTICAL DESIGN, 2005, 11 (12) :1511-1527
[3]   AUTORADIOGRAPHIC AND HISTOLOGICAL STUDIES OF POSTNATAL NEUROGENESIS .4. CELL PROLIFERATION AND MIGRATION IN ANTERIOR FOREBRAIN, WITH SPECIAL REFERENCE TO PERSISTING NEUROGENESIS IN OLFACTORY BULB [J].
ALTMAN, J .
JOURNAL OF COMPARATIVE NEUROLOGY, 1969, 137 (04) :433-&
[4]   AUTORADIOGRAPHIC AND HISTOLOGICAL EVIDENCE OF POSTNATAL HIPPOCAMPAL NEUROGENESIS IN RATS [J].
ALTMAN, J ;
DAS, GD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1965, 124 (03) :319-&
[5]   For the long run: Maintaining germinal niches in the adult brain [J].
Alvarez-Buylla, A ;
Lim, DA .
NEURON, 2004, 41 (05) :683-686
[6]   A unified hypothesis on the lineage of neural stem cells [J].
Alvarez-Buylla, A ;
García-Verdugo, JM ;
Tramontin, AD .
NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) :287-293
[7]   Metabotropic glutamate receptors: electrophysiological properties and role in plasticity [J].
Anwyl, R .
BRAIN RESEARCH REVIEWS, 1999, 29 (01) :83-120
[8]   Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance [J].
Arriza, JL ;
Eliasof, S ;
Kavanaugh, MP ;
Amara, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4155-4160
[9]   N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke [J].
Arvidsson, A ;
Kokaia, Z ;
Lindvall, O .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2001, 14 (01) :10-18
[10]  
Asahi M, 1998, J NEUROSCI RES, V52, P699, DOI 10.1002/(SICI)1097-4547(19980615)52:6<699::AID-JNR9>3.0.CO