On expansive graphs

被引:9
作者
Larrion, F. [1 ]
Neumann-Lara, V. [1 ]
Pizana, M. A. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Ingn Elect, Mexico City 09340, DF, Mexico
关键词
ITERATED CLIQUE GRAPHS; DIVERGENT; TRIANGULATIONS; DIAMETERS;
D O I
10.1016/j.ejc.2008.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The clique graph K(G) of a graph G, is the intersection graph of its (maximal) cliques, and G is K-divergent if the orders of its iterated clique graphs K(G), K-2 (G), K-3 (G).... tend to infinity. A coaffine graph has a symmetry that maps each vertex outside of its closed neighbourhood. For these graphs we study the notion of expansivity, which implies K-divergence. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:372 / 379
页数:8
相关论文
共 26 条
  • [1] [Anonymous], 1995, Graph Dynamics
  • [2] BALAKRISHNAN R, 1986, UTILITAS MATHEMATICA, V29, P263
  • [3] CLIQUE GRAPHS AND HELLY GRAPHS
    BANDELT, HJ
    PRISNER, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 51 (01) : 34 - 45
  • [4] Self-clique Helly circular-arc graphs
    Bonomo, F
    [J]. DISCRETE MATHEMATICS, 2006, 306 (06) : 595 - 597
  • [5] Bornstein CF, 1998, J GRAPH THEOR, V28, P147, DOI 10.1002/(SICI)1097-0118(199807)28:3<147::AID-JGT4>3.0.CO
  • [6] 2-K
  • [7] The clique operator on graphs with few P4's
    de Mello, CP
    Morgana, A
    Liverani, M
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (03) : 485 - 492
  • [8] A CLASS OF CLIQUE-CLOSED GRAPHS
    DENG, CL
    LIM, CK
    [J]. DISCRETE MATHEMATICS, 1994, 127 (1-3) : 131 - 137
  • [9] DENG CL, 1990, GRAPH THEORY APPL
  • [10] On the radius and diameter of the clique graph
    Dutton, RD
    Brigham, RC
    [J]. DISCRETE MATHEMATICS, 1995, 147 (1-3) : 293 - 295