A Hybrid Capacitor Based on Fe3O4-Graphene Nanocomposite/Few-Layer Graphene in Different Aqueous Electrolytes

被引:66
作者
Eskusson, J. [1 ]
Rauwel, P. [2 ]
Nerut, J. [1 ]
Janes, A. [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
[2] Univ Tartu, Inst Phys, EE-50411 Tartu, Estonia
关键词
LITHIUM-ION BATTERIES; PERFORMANCE ELECTROCHEMICAL CAPACITORS; ULTRAHIGH-ENERGY DENSITY; FE3O4; NANOPARTICLES; ANODE MATERIALS; DOPED GRAPHENE; STORAGE DEVICE; SUPERCAPACITORS; ELECTRODES; SHEETS;
D O I
10.1149/2.1161613jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Graphene nanoplatelets have been used for synthesis of Fe3O4-graphene nanocomposite negative electrode. A high-resolution transmission electron microscopy measurements of the graphene areas surrounded by Fe3O4 nanoparticles show that the graphene has folded on itself and the edges have some amounts of waviness which could indicate existence of amorphous carbon. A high energy density hybrid capacitors (HC) have been completed based on 1 M Li2SO4, Na2SO4, Rb2SO4, Cs2SO4 and MgSO4 aqueous electrolytes and Fe3O4-graphene nanocomposite/few-layer graphene electrode materials. The optimal working potential region of each electrode has been regulated by optimized mass balance of the electrodes. After optimization the cell voltage increased up to 1.4 V and an energy density (maximal) up to 9.4 Wh kg(-1) in 1 M Cs2SO4 electrolyte. The maximal power density 41.1 kW kg(-1) has been calculated for 1 M Rb2SO4 aqueous electrolyte based HC. The energy and power density of completed HC cells decreased with solvation Gibbs energy of the cations. The cycling efficiency values have been calculated being highest for 1 M Rb2SO4 and 1 M Cs2SO4 electrolyte based systems, 98.4% and 99.9%, respectively. Thus, promising HC cells based on Fe3O4-graphene nanocomposite/few-layer graphene electrodes in different aqueous electrolytes have been developed and characterized. (C) 2016 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A2768 / A2775
页数:8
相关论文
共 47 条
[1]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[2]  
Belanger D., 2008, SPRING, V17, P49
[3]   A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte [J].
Brousse, T ;
Belanger, D .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (11) :A244-A248
[4]   Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor [J].
Brousse, Thierry ;
Taberna, Pierre-Louis ;
Crosnier, Olivier ;
Dugas, Romain ;
Guillemet, Philippe ;
Scudeller, Yves ;
Zhou, Yingke ;
Favier, Frederic ;
Belanger, Daniel ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :633-641
[5]   An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem [J].
Chen, Jianer ;
Liu, Yang ;
Lu, Songjian .
ALGORITHMICA, 2009, 55 (01) :1-13
[6]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[7]   Polytetrafluoroethylene decomposition in air and nitrogen [J].
Conesa, JA ;
Font, R .
POLYMER ENGINEERING AND SCIENCE, 2001, 41 (12) :2137-2147
[8]   Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J].
Cottineau, T ;
Toupin, M ;
Delahaye, T ;
Brousse, T ;
Bélanger, D .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 82 (04) :599-606
[9]   Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density [J].
Fan, Zhuangjun ;
Yan, Jun ;
Wei, Tong ;
Zhi, Linjie ;
Ning, Guoqing ;
Li, Tianyou ;
Wei, Fei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (12) :2366-2375
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57