Thermal operator representation of finite temperature graphs. II.

被引:15
作者
Brandt, FT
Das, A
Espinosa, O
Frenkel, J
Perez, S
机构
[1] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile
[4] Fed Univ Para, Dept Fis, BR-66075110 Belem, Para, Brazil
来源
PHYSICAL REVIEW D | 2006年 / 73卷 / 06期
关键词
D O I
10.1103/PhysRevD.73.065010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the mixed space representation, we extend our earlier analysis to the case of Dirac and gauge fields and show that in the absence of a chemical potential, the finite temperature Feynman diagrams can be related to the corresponding zero temperature graphs through a thermal operator. At nonzero chemical potential we show explicitly in the case of the fermion self-energy that such a factorization is violated because of the presence of a singular contact term. Such a temperature dependent term which arises only at finite density and has a quadratic mass singularity cannot be related, through a regular thermal operator, to the fermion self-energy at zero temperature which is infrared finite. Furthermore, we show that the thermal radiative corrections at finite density have a screening effect for the chemical potential leading to a finite renormalization of the potential.
引用
收藏
页数:13
相关论文
共 25 条
[1]   EXPECTATION VALUE FORMALISM IN QUANTUM FIELD THEORY .1. [J].
BAKSHI, PM ;
MAHANTHAPPA, KT .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (01) :1-&
[2]   OUT OF EQUILIBRIUM PHASE-TRANSITIONS AND A TOY MODEL FOR DISORIENTED CHIRAL CONDENSATES [J].
BEDAQUE, PF ;
DAS, A .
MODERN PHYSICS LETTERS A, 1993, 8 (33) :3151-3163
[3]  
Bellac M, 1996, Thermal Field Theory
[4]   Renormalization group theory of the three-dimensional dilute Bose gas [J].
Bijlsma, M ;
Stoof, HTC .
PHYSICAL REVIEW A, 1996, 54 (06) :5085-5103
[5]   Isolating vacuum amplitudes in quantum field calculations at finite temperature [J].
Blaizot, JP ;
Reinosa, U .
NUCLEAR PHYSICS A, 2006, 764 :393-422
[6]   SOFT AMPLITUDES IN HOT GAUGE-THEORIES - A GENERAL-ANALYSIS [J].
BRAATEN, E ;
PISARSKI, RD .
NUCLEAR PHYSICS B, 1990, 337 (03) :569-634
[7]   DEDUCING HARD THERMAL LOOPS FROM WARD IDENTITIES [J].
BRAATEN, E ;
PISARSKI, RD .
NUCLEAR PHYSICS B, 1990, 339 (02) :310-324
[8]   Thermal operator representation of finite temperature graphs [J].
Brandt, FT ;
Das, A ;
Espinosa, O ;
Frenkel, J ;
Perez, S .
PHYSICAL REVIEW D, 2005, 72 (08)
[9]   Finite temperature perturbation theory and large gauge invariance [J].
Das, A ;
Dunne, G .
PHYSICAL REVIEW D, 1998, 57 (08) :5023-5031
[10]  
Das A, 1997, FINITE TEMPERATURE F