Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering

被引:61
|
作者
Lewandowska-Lancucka, Joanna [1 ]
Mystek, Katarzyna [1 ]
Mignon, Am [2 ]
Van Vlierberghe, Sandra [2 ,3 ]
Latkiewicz, Anna [4 ]
Nowakowska, Maria [1 ]
机构
[1] Jagiellonian Univ, Fac Chem, Ingardena 3, PL-30060 Krakow, Poland
[2] Univ Ghent, Dept Organ & Macromol Chem, Krijgslaan 281,Bldg S-4 Bis, BE-9000 Ghent, Belgium
[3] Vrije Univ Brussel, Brussels Photon Team, Pl Laan 2, BE-1050 Brussels, Belgium
[4] Jagiellonian Univ, Inst Geol Sci, Lab Field Emiss Scanning Elect Microscopy & Micro, Oleandry 2A, PL-30060 Krakow, Poland
关键词
Alginate; Gelatin; Hydrogels; Silica; Tissue engineering; MECHANICAL-PROPERTIES; HYDROGELS; SCAFFOLDS; SPECTROSCOPY; COLLAGEN; GROWTH;
D O I
10.1016/j.carbpol.2016.11.051
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The paper presents the synthesis, the physico-chemical and the biological properties of novel hybrid materials prepared from photo-crosslinked gelatin/alginate-based hydrogels and silica particles exhibiting potential for the regeneration of bone tissue. Both alginate and gelatin were functionalized with methacrylate and methacrylamide moieties, respectively to render them photo-crosslinkable. Submicron silica particles of two sizes were dispersed within three types of polymeric sols including alginate, gelatin, and gelatin/alginate blends, which were subsequently photo-crosslinked. The swelling ratio, the gel fraction and the mechanical properties of the hybrid materials developed were examined and compared to these determined for reference hydrogel matrices. The in vitro cell culture studies have shown that the prepared materials exhibited biocompatibility as they supported both MEFs and MG-63 mitochondrial activity. Finally, the in vitro experiments performed under simulated body fluid conditions have revealed that due to inclusion of silica particles into the biopolymeric hydrogel matrices the mineralization was successfully induced. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1714 / 1722
页数:9
相关论文
共 50 条
  • [21] Progress in cardiac tissue engineering and regeneration: Implications of gelatin-based hybrid scaffolds
    Asl, Siamak Kazemi
    Rahimzadegan, Milad
    Asl, Alireza Kazemi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 261
  • [22] Bone tissue engineering using bone marrow stromal cells and an injectable sodium alginate/gelatin scaffold
    Xia, Yang
    Mei, Fang
    Duan, Yongli
    Gao, Ying
    Xiong, Zhuo
    Zhang, Ting
    Zhang, Hongquan
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (04) : 1044 - 1050
  • [23] Modular tissue engineering: fabrication of a gelatin-based construct
    McGuigan, Alison P.
    Sefton, Michael V.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2007, 1 (02) : 136 - 145
  • [24] Internally-crosslinked alginate dialdehyde/ alginate/gelatin-based hydrogels as bioinks for prospective cardiac tissue engineering applications
    Stola, Giovanni Paolo
    Paoletti, Camilla
    Nicoletti, Letizia
    Paul, Geo
    Cassino, Claudio
    Marchese, Leonardo
    Chiono, Valeria
    Marcello, Elena
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (06) : 544 - 566
  • [25] Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review
    Singh, Yogendra Pratap
    Dasgupta, Sudip
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2022, 33 (13) : 1704 - 1758
  • [26] Gelatin-based nanofibrous electrically conductive scaffolds for tissue engineering applications
    Massoumi, Bakhshali
    Abbasian, Mojtaba
    Khalilzadeh, Balal
    Jahanban-Esfahlan, Rana
    Rezaei, Aram
    Samadian, Hadi
    Derakhshankhah, Hossein
    Jaymand, Mehdi
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2021, 70 (10) : 693 - 702
  • [27] Advances in modulating mechanical properties of gelatin-based hydrogel in tissue engineering
    Azmir, Mohammed Syed Nurul Azam
    Moni, Md. Noyon
    Gobetti, Anna
    Ramorino, Giorgio
    Dey, Kamol
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2025, 74 (03) : 215 - 250
  • [28] Current advances in electrospun gelatin-based scaffolds for tissue engineering applications
    Aldana, Ana A.
    Abraham, Gustavo A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 523 (02) : 441 - 453
  • [29] 3D porous porous poly(ε-caprolactone)/58S bioactive glass-sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering
    Mao, Daoyong
    Li, Qing
    Li, Daikun
    Tan, Ya
    Che, Qijun
    MATERIALS & DESIGN, 2018, 160 : 1 - 8
  • [30] Effects of cerium-doped bioactive glass incorporation on an alginate/ gelatin scaffold for bone tissue engineering: In vitro characterizations
    Mostajeran, Hossein
    Baheiraei, Nafiseh
    Bagheri, Hamed
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 255