Alginate- and gelatin-based bioactive photocross-linkable hybrid materials for bone tissue engineering

被引:61
|
作者
Lewandowska-Lancucka, Joanna [1 ]
Mystek, Katarzyna [1 ]
Mignon, Am [2 ]
Van Vlierberghe, Sandra [2 ,3 ]
Latkiewicz, Anna [4 ]
Nowakowska, Maria [1 ]
机构
[1] Jagiellonian Univ, Fac Chem, Ingardena 3, PL-30060 Krakow, Poland
[2] Univ Ghent, Dept Organ & Macromol Chem, Krijgslaan 281,Bldg S-4 Bis, BE-9000 Ghent, Belgium
[3] Vrije Univ Brussel, Brussels Photon Team, Pl Laan 2, BE-1050 Brussels, Belgium
[4] Jagiellonian Univ, Inst Geol Sci, Lab Field Emiss Scanning Elect Microscopy & Micro, Oleandry 2A, PL-30060 Krakow, Poland
关键词
Alginate; Gelatin; Hydrogels; Silica; Tissue engineering; MECHANICAL-PROPERTIES; HYDROGELS; SCAFFOLDS; SPECTROSCOPY; COLLAGEN; GROWTH;
D O I
10.1016/j.carbpol.2016.11.051
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The paper presents the synthesis, the physico-chemical and the biological properties of novel hybrid materials prepared from photo-crosslinked gelatin/alginate-based hydrogels and silica particles exhibiting potential for the regeneration of bone tissue. Both alginate and gelatin were functionalized with methacrylate and methacrylamide moieties, respectively to render them photo-crosslinkable. Submicron silica particles of two sizes were dispersed within three types of polymeric sols including alginate, gelatin, and gelatin/alginate blends, which were subsequently photo-crosslinked. The swelling ratio, the gel fraction and the mechanical properties of the hybrid materials developed were examined and compared to these determined for reference hydrogel matrices. The in vitro cell culture studies have shown that the prepared materials exhibited biocompatibility as they supported both MEFs and MG-63 mitochondrial activity. Finally, the in vitro experiments performed under simulated body fluid conditions have revealed that due to inclusion of silica particles into the biopolymeric hydrogel matrices the mineralization was successfully induced. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1714 / 1722
页数:9
相关论文
共 50 条
  • [11] Modular tissue engineering: fabrication of a gelatin-based construct
    McGuigan, Alison P.
    Sefton, Michael V.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2007, 1 (02) : 136 - 145
  • [12] Internally-crosslinked alginate dialdehyde/ alginate/gelatin-based hydrogels as bioinks for prospective cardiac tissue engineering applications
    Stola, Giovanni Paolo
    Paoletti, Camilla
    Nicoletti, Letizia
    Paul, Geo
    Cassino, Claudio
    Marchese, Leonardo
    Chiono, Valeria
    Marcello, Elena
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (06) : 544 - 566
  • [13] Bioactive Materials for Bone Tissue Engineering
    Rau, Julietta V.
    Antoniac, Iulian
    Cama, Giuseppe
    Komlev, Vladimir S.
    Ravaglioli, Antonio
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [14] Gelatin-based Targeted Delivery Systems for Tissue Engineering
    Zhai, Xinyue
    Wu, Yuqian
    Tan, Huaping
    CURRENT DRUG TARGETS, 2023, 24 (08) : 673 - 687
  • [15] Fabrication and characterization of gelatin-based biocompatible porous composite scaffold for bone tissue engineering
    Khan, M. Nuruzzaman
    Islam, Jahid M. M.
    Khan, Mubarak A.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (11) : 3020 - 3028
  • [16] Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering
    Liao, Han-Tsung
    Shalumon, K. T.
    Chang, Kun-Hung
    Sheu, Chialin
    Chen, Jyh-Ping
    JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (10) : 1827 - 1841
  • [17] Advances in gelatin-based scaffolds for tissue engineering applications: A review
    Sonwane, Shubham
    Bonde, Smita
    Bonde, Chandrakant
    Chandarana, Chandani
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2025, 107
  • [18] Gelatin-based extracellular matrix cryogels for cartilage tissue engineering
    Han, Min-Eui
    Kang, Byung Jae
    Kim, Su-Hwan
    Kim, Hwan D.
    Hwang, Nathaniel S.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 45 : 421 - 429
  • [19] Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ
    Ren, Pengfei
    Wei, Dandan
    Liang, Min
    Xu, Li
    Zhang, Tianzhu
    Zhang, Qianli
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 212 : 67 - 84
  • [20] Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review
    Singh, Yogendra Pratap
    Dasgupta, Sudip
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2022, 33 (13) : 1704 - 1758