In peripartum cardiomyopathy plasminogen activator inhibitor-1 is a potential new biomarker with controversial roles

被引:23
|
作者
Ricke-Hoch, Melanie [1 ]
Hoes, Martijn F. [2 ]
Pfeffer, Tobias J. [1 ]
Schlothauer, Stella [1 ]
Nonhoff, Justus [1 ]
Haidari, Susanna [1 ]
Bomer, Nils [2 ]
Scherr, Michaela [3 ]
Stapel, Britta [1 ]
Stelling, Elisabeth [1 ]
Kiyan, Yulia [4 ]
Falk, Christine [5 ]
Haghikia, Arash [1 ,6 ]
Binah, Ofer [7 ]
Arany, Zolt [8 ,9 ]
Thum, Thomas [10 ]
Bauersachs, Johann [1 ]
van der Meer, Peter [2 ]
Hilfiker-Kleiner, Denise [1 ]
机构
[1] Hannover Med Sch, Dept Cardiol & Angiol, Carl Neuberg Str 1, D-30625 Hannover, Germany
[2] Univ Med Ctr Groningen, Dept Cardiol, AB31,Hanzepl 1, NL-9713 GZ Groningen, Netherlands
[3] Hannover Med Sch, Dept Hematol Hemostasis Oncol & Stem Cell Transpl, Hannover, Germany
[4] Hannover Med Sch, Nephrol Dept, Hannover, Germany
[5] Hannover Med Sch, Inst Transplant Immunol, IFB Tx, Hannover, Germany
[6] Charite Univ Med Berlin, Dept Cardiol, Campus Benjamin Franklin, Berlin, Germany
[7] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Dept Physiol, Haifa, Israel
[8] Univ Penn, Cardiovasc Inst, Philadelphia, PA 19104 USA
[9] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[10] Hannover Med Sch, Dept Mol & Translat Therapy Strategies IMTTS, Hannover, Germany
基金
欧洲研究理事会;
关键词
PAI-1; Heart failure; Peripartum cardiomyopathy; Biomarker; miR-146a; GENE POLYMORPHISMS; HEART-FAILURE; BROMOCRIPTINE; ASSOCIATION; EXPRESSION; PROLACTIN; PREGNANCY; HISTORY; GROWTH; BETA;
D O I
10.1093/cvr/cvz300
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Peripartum cardiomyopathy (PPCM) is a life-threatening heart disease occurring in previously heart-healthy women. A common pathomechanism in PPCM involves the angiostatic 16 kDa-prolactin (16 kDa-PRL) fragment, which via NF-kappa B-mediated up-regulation of microRNA-(miR)-146a induces vascular damage and heart failure. We analyse whether the plasminogen activator inhibitor-1 (PAI-1) is involved in the pathophysiology of PPCM. Methods and results In healthy age-matched postpartum women (PP-Ctrl, n = 53, left ventricular ejection fraction, LVEF > 55%), PAI-1 plasma levels were within the normal range (21 +/- 10 ng/mL), but significantly elevated (64 +/- 38 ng/mL, P < 0.01) in postpartum PPCM patients at baseline (BL, n = 64, mean LVEF: 23 +/- 8%). At 6-month follow-up (n = 23), PAI-1 levels decreased (36 +/- 14 ng/mL, P < 0.01 vs. BL) and LVEF (49 +/- 11%) improved. Increased N-terminal pro-brain natriuretic peptide and Troponin T did not correlate with PAI-1. C-reactive protein, interleukin (IL)-6 and IL-1 beta did not differ between PPCM patients and PP-Ctrl. MiR-146a was 3.6-fold (P < 0.001) higher in BL-PPCM plasma compared with PP-Ctrl and correlated positively with PAI-1. In BL-PPCM serum, 16 kDa-PRL coprecipitated with PAI-1, which was associated with higher (P < 0.05) uPAR-mediated NF-kappa B activation in endothelial cells compared with PP-Ctrl serum. Cardiac biopsies and dermal fibroblasts from PPCM patients displayed higher PAI-1 mRNA levels (P < 0.05) than healthy controls. In PPCM mice (due to a cardiomyocyte-specific-knockout for STAT3, CKO), cardiac PAI-1 expression was higher than in postpartum wild-type controls, whereas a systemic PAI-1-knockout in CKO mice accelerated peripartum cardiac fibrosis, inflammation, heart failure, and mortality. Conclusion In PPCM patients, circulating and cardiac PAI-1 expression are up-regulated. While circulating PAI-1 may add 16 kDa-PRL to induce vascular impairment via the uPAR/NF-kappa B/miR-146a pathway, experimental data suggest that cardiac PAI-1 expression seems to protect the PPCM heart from fibrosis. Thus, measuring circulating PAI-1 and miR-146a, together with an uPAR/NF-kappa B-activity assay could be developed into a specific diagnostic marker assay for PPCM, but unrestricted reduction of PAI-1 for therapy may not be advised.
引用
收藏
页码:1875 / 1886
页数:12
相关论文
共 50 条
  • [31] Delayed Treatment with Plasminogen Activator Inhibitor-1 Decoys Reduces Tubulointerstitial Fibrosis
    Gonzalez, Julien
    Klein, Julie
    Chauhan, Sharmila D.
    Neau, Eric
    Calise, Denis
    Nevoit, Caroline
    Chaaya, Rana
    Miravete, Mathieu
    Delage, Christine
    Bascands, Jean-Loup
    Schanstra, Joost P.
    Buffin-Meyer, Benedicte
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2009, 234 (12) : 1511 - 1518
  • [32] Lipoteichoic acid upregulates plasminogen activator inhibitor-1 expression in parapneumonic effusions
    Lee, Kai-Ling
    Chen, Wei-Lin
    Chen, Ray-Jade
    Lai, Kevin S.
    Chung, Chi-Li
    RESPIROLOGY, 2018, 23 (01) : 89 - 95
  • [33] Association between Plasma Levels of Plasminogen Activator Inhibitor-1 and Colorectal Neoplasms
    Kim, Eun Ran
    Yang, Mun Hee
    Lim, Yeun Jung
    Lee, Jin Hee
    Chang, Dong Kyung
    Kim, Young-Ho
    Son, Hee Jung
    Kim, Jae J.
    Rhee, Jong Chul
    Kim, Jin Yong
    GUT AND LIVER, 2013, 7 (05) : 519 - 523
  • [34] Plasminogen Activator Inhibitor-1 and Diagnosis of the Metabolic Syndrome in a West African Population
    Kodaman, Nuri
    Aldrich, Melinda C.
    Sobota, Rafal
    Asselbergs, Folkert W.
    Brown, Nancy J.
    Moore, Jason H.
    Williams, Scott M.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (10):
  • [35] Functionally stable plasminogen activator inhibitor-1 in a family with cardiovascular disease and vitiligo
    Agirbasli, Mehmet
    Eren, Mesut
    Yasar, Songul
    Delil, Kenan
    Goktay, Fatih
    Oner, Ebru Toksoy
    Vaughan, Douglas E.
    JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2014, 38 (01) : 50 - 56
  • [36] Plasminogen Activator Inhibitor-1, Fibrinogen, and Lung Function in Adolescents with Asthma and Obesity
    Huang, Fengyang
    Estela del-Rio-Navarro, Blanca
    Torres Alcantara, Saul
    Perez Ontiveros, Jose Alfredo
    Pietropaolo Cienfuegos, Dino Roberto
    Bello Gonzalez, Santos Albel
    Villafana, Santiago
    Bravo, Guadalupe
    Hong, Enrique
    ENDOCRINE RESEARCH, 2012, 37 (03) : 135 - 144
  • [37] Effects of specific chemical suppressors of plasminogen activator inhibitor-1 in cardiovascular diseases
    Suzuki, Jun-ichi
    Ogawa, Masahito
    Muto, Susumu
    Itai, Akiko
    Hirata, Yasunobu
    Isobe, Mitsuaki
    Nagai, Ryozo
    EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2011, 20 (02) : 255 - 264
  • [38] Inhibition of plasminogen activator inhibitor-1 attenuates against intestinal fibrosis in mice
    Imai, Jin
    Yahata, Takashi
    Ichikawa, Hitoshi
    Ibrahim, Abd Aziz
    Yazawa, Masaki
    Sumiyoshi, Hideaki
    Inagaki, Yutaka
    Matsushima, Masashi
    Suzuki, Takayoshi
    Mine, Tetsuya
    Ando, Kiyoshi
    Miyata, Toshio
    Hozumi, Katsuto
    INTESTINAL RESEARCH, 2020, 18 (02) : 219 - 228
  • [39] The role of plasminogen activator inhibitor-1 in gynecological and obstetrical diseases: An update review
    Zhai, Jiaqi
    Li, Zijian
    Zhou, Yue
    Yang, Xiuhua
    JOURNAL OF REPRODUCTIVE IMMUNOLOGY, 2022, 150
  • [40] Identification of genomic loci regulating platelet plasminogen activator inhibitor-1 in mice
    Siebert, Amy E.
    Brake, Marisa A.
    Verbeek, Stephanie C.
    Johnston, Alexander J.
    Morgan, Andrew P.
    Cleuren, Audrey C.
    Jurek, Adrianna M.
    Schneider, Caitlin D.
    Germain, Derrik M.
    Battistuzzi, Fabia U.
    Zhu, Guojing
    Miller, Darla R.
    Johnsen, Jill M.
    Villena, Fernando Pardo-Manuel de
    Rondina, Matthew T.
    Westrick, Randal J.
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2023, 21 (10) : 2917 - 2928