Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

被引:8
作者
Zuo, Zheng-Wei [1 ]
Li, Guo-Ling
Li, Liben
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX RENORMALIZATION-GROUP; INSULATORS; STATES;
D O I
10.1103/PhysRevB.97.115126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.
引用
收藏
页数:7
相关论文
共 50 条
[31]   One-dimensional Dexter-type excitonic topological phase transition [J].
Zhu, Jianhua ;
Chen, Haoxiang ;
Chen, Ji ;
Wu, Wei .
PHYSICAL REVIEW B, 2024, 110 (08)
[32]   Topological invariants for phase transition points of one-dimensional Z2 topological systems [J].
Li, Linhu ;
Yang, Chao ;
Chen, Shu .
EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (09)
[33]   Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model [J].
Chen, Cheng-Chien ;
Muechler, Lukas ;
Car, Roberto ;
Neupert, Titus ;
Maciejko, Joseph .
PHYSICAL REVIEW LETTERS, 2016, 117 (09)
[34]   Cellular Dynamical Mean-field Study of the One-dimensional Peierls Hubbard Model [J].
Go, Ara ;
Jeon, Gun Sang .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 56 (03) :994-997
[35]   Interaction quantum quenches in the one-dimensional Fermi-Hubbard model with spin imbalance [J].
Riegger, L. ;
Orso, G. ;
Heidrich-Meisner, F. .
PHYSICAL REVIEW A, 2015, 91 (04)
[36]   Spectral properties of a one-dimensional extended Hubbard model from bosonization and time-dependent variational principle: Applications to one-dimensional cuprates [J].
Wang, Hao-Xin ;
Wu, Yi-Ming ;
Jiang, Yi-Fan ;
Yao, Hong .
PHYSICAL REVIEW B, 2024, 109 (04)
[37]   Ferromagnetism in one-dimensional Hubbard model induced by the next-nearest-neighbor hopping at electron density 3/2 [J].
Yang Yuan-Yuan ;
Zhang Jian ;
Pan Hui ;
Wang Hai-Long .
CHINESE PHYSICS B, 2014, 23 (11)
[38]   Structural and topological phase transitions induced by strain in two-dimensional bismuth [J].
Lima, Erika N. ;
Schmidt, Tome M. ;
Nunes, R. W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (47)
[39]   Superlattice-induced minigaps in graphene band structure due to underlying one-dimensional nanostructuration [J].
Celis, A. ;
Nair, M. N. ;
Sicot, M. ;
Nicolas, F. ;
Kubsky, S. ;
Malterre, D. ;
Taleb-Ibrahimi, A. ;
Tejeda, A. .
PHYSICAL REVIEW B, 2018, 97 (19)
[40]   Anderson disorder-induced nontrivial topological phase transitions in two-dimensional topological superconductors [J].
Wu, Hai-Bin ;
Liu, Jian-Jun .
PHYSICAL REVIEW B, 2021, 103 (11)