Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

被引:8
作者
Zuo, Zheng-Wei [1 ]
Li, Guo-Ling
Li, Liben
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX RENORMALIZATION-GROUP; INSULATORS; STATES;
D O I
10.1103/PhysRevB.97.115126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Interaction induced topological protection in one-dimensional conductors [J].
Kainaris, Nikolaos ;
Santos, Raul A. ;
Gutman, D. B. ;
Carr, Sam T. .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8)
[22]   Topological transitions of interacting bosons in one-dimensional bichromatic optical lattices [J].
Deng, Xiaolong ;
Santos, Luis .
PHYSICAL REVIEW A, 2014, 89 (03)
[23]   Topological quantum phase transitions in quasicrystalline potential modulated one-dimensional p-wave superconductors [J].
Gu, Yan ;
Wang, Zhipeng ;
Lu, Zhanpeng .
ACTA PHYSICA SINICA, 2025, 74 (10)
[24]   Topological superconductivity in the one-dimensional interacting Creutz model [J].
Sticlet, Doru ;
Seabra, Luis ;
Pollmann, Frank ;
Cayssol, Jerome .
INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS 2014 (SCES2014), 2015, 592
[25]   Uhlmann Phase as a Topological Measure for One-Dimensional Fermion Systems [J].
Viyuela, O. ;
Rivas, A. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (13)
[26]   Quantum phases of a one-dimensional Majorana-Bose-Hubbard model [J].
Roy, Ananda ;
Hauschild, Johannes ;
Pollmann, Frank .
PHYSICAL REVIEW B, 2020, 101 (07)
[27]   Filling-dependent doublon dynamics in the one-dimensional Hubbard model [J].
Rausch, Roman ;
Potthoff, Michael .
PHYSICAL REVIEW B, 2017, 95 (04)
[28]   Semiclassical bifurcations and topological phase transitions in a one-dimensional lattice of coupled Lipkin-Meshkov-Glick models [J].
Sorokin, A. V. ;
Alcalde, M. Aparicio ;
Bastidas, V. M. ;
Engelhardt, G. ;
Angelakis, D. G. ;
Brandes, T. .
PHYSICAL REVIEW E, 2016, 94 (03)
[29]   Winding numbers of phase transition points for one-dimensional topological systems [J].
Li, Linhu ;
Yang, Chao ;
Chen, Shu .
EPL, 2015, 112 (01)
[30]   Fractional topological phase in one-dimensional flat bands with nontrivial topology [J].
Guo, Huaiming ;
Shen, Shun-Qing ;
Feng, Shiping .
PHYSICAL REVIEW B, 2012, 86 (08)