Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

被引:8
作者
Zuo, Zheng-Wei [1 ]
Li, Guo-Ling
Li, Liben
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX RENORMALIZATION-GROUP; INSULATORS; STATES;
D O I
10.1103/PhysRevB.97.115126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Interaction induced topological protection in one-dimensional conductors
    Kainaris, Nikolaos
    Santos, Raul A.
    Gutman, D. B.
    Carr, Sam T.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (6-8):
  • [22] Topological transitions of interacting bosons in one-dimensional bichromatic optical lattices
    Deng, Xiaolong
    Santos, Luis
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [23] Topological superconductivity in the one-dimensional interacting Creutz model
    Sticlet, Doru
    Seabra, Luis
    Pollmann, Frank
    Cayssol, Jerome
    INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS 2014 (SCES2014), 2015, 592
  • [24] Uhlmann Phase as a Topological Measure for One-Dimensional Fermion Systems
    Viyuela, O.
    Rivas, A.
    Martin-Delgado, M. A.
    PHYSICAL REVIEW LETTERS, 2014, 112 (13)
  • [25] Quantum phases of a one-dimensional Majorana-Bose-Hubbard model
    Roy, Ananda
    Hauschild, Johannes
    Pollmann, Frank
    PHYSICAL REVIEW B, 2020, 101 (07)
  • [26] Filling-dependent doublon dynamics in the one-dimensional Hubbard model
    Rausch, Roman
    Potthoff, Michael
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [27] Semiclassical bifurcations and topological phase transitions in a one-dimensional lattice of coupled Lipkin-Meshkov-Glick models
    Sorokin, A. V.
    Alcalde, M. Aparicio
    Bastidas, V. M.
    Engelhardt, G.
    Angelakis, D. G.
    Brandes, T.
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [28] Fractional topological phase in one-dimensional flat bands with nontrivial topology
    Guo, Huaiming
    Shen, Shun-Qing
    Feng, Shiping
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [29] Winding numbers of phase transition points for one-dimensional topological systems
    Li, Linhu
    Yang, Chao
    Chen, Shu
    EPL, 2015, 112 (01)
  • [30] One-dimensional Dexter-type excitonic topological phase transition
    Zhu, Jianhua
    Chen, Haoxiang
    Chen, Ji
    Wu, Wei
    PHYSICAL REVIEW B, 2024, 110 (08)