Statistically induced topological phase transitions in a one-dimensional superlattice anyon-Hubbard model

被引:8
作者
Zuo, Zheng-Wei [1 ]
Li, Guo-Ling
Li, Liben
机构
[1] Henan Univ Sci & Technol, Sch Phys & Engn, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX RENORMALIZATION-GROUP; INSULATORS; STATES;
D O I
10.1103/PhysRevB.97.115126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We theoretically investigate topological properties of the one-dimensional superlattice anyon-Hubbard model, which can be mapped to a superlattice bose-Hubbard model with an occupation-dependent phase factor by fractional Jordan-Wigner transformation. The topological anyon-Mott insulator is identified by topological invariant and edge modes using exact diagonalization and the density matrix renormalization group algorithm. When only the statistical angle is varied and all other parameters are fixed, a statistically induced topological phase transition can be realized, which provides insights into the topological phase transitions. What's more, we give an explanation of the statistically induced topological phase transition. The topological anyon-Mott phases can also appear in a variety of superlattice anyon-Hubbard models.
引用
收藏
页数:7
相关论文
共 50 条
[11]   Dynamics in the one-dimensional extended ionic Hubbard model [J].
Hafez, Mohsen ;
Abolhassani, M. R. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (24)
[12]   THE ONE-DIMENSIONAL HUBBARD MODEL IN THE LIMIT OF u >> t [J].
Jakubczyk, Dorota .
REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (02) :139-162
[13]   Localization, delocalization, and topological phase transitions in the one-dimensional split-step quantum walk [J].
Rakovszky, Tibor ;
Asboth, Janos K. .
PHYSICAL REVIEW A, 2015, 92 (05)
[14]   Topological phase in a one-dimensional interacting fermion system [J].
Guo, Huaiming ;
Shen, Shun-Qing .
PHYSICAL REVIEW B, 2011, 84 (19)
[15]   Dynamic phase transitions in the one-dimensional spin-phonon coupling model [J].
Apetrei, Alin Marian ;
Boukheddaden, Kamel ;
Stancu, Alexandru .
PHYSICAL REVIEW B, 2013, 87 (01)
[16]   Transport properties of the one-dimensional Hubbard model at finite temperature [J].
Karrasch, C. ;
Kennes, D. M. ;
Moore, J. E. .
PHYSICAL REVIEW B, 2014, 90 (15)
[17]   Real-time dynamics in the one-dimensional Hubbard model [J].
Seabra, Luis ;
Essler, Fabian H. L. ;
Pollmann, Frank ;
Schneider, Imke ;
Veness, Thomas .
PHYSICAL REVIEW B, 2014, 90 (24)
[18]   Excitation spectrum of one-dimensional extended ionic Hubbard model [J].
Hafez, M. ;
Jafari, S. A. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 78 (03) :323-333
[19]   Reentrance and entanglement in the one-dimensional Bose-Hubbard model [J].
Pino, M. ;
Prior, J. ;
Somoza, A. M. ;
Jaksch, D. ;
Clark, S. R. .
PHYSICAL REVIEW A, 2012, 86 (02)
[20]   Bethe strings in the spin dynamical structure factor of the Mott-Hubbard phase in the one-dimensional fermionic Hubbard model [J].
Carmelo, Jose M. P. ;
Cadez, Tilen .
PHYSICAL REVIEW B, 2021, 103 (04)