Quantum Back-Action of an Individual Variable-Strength Measurement

被引:221
作者
Hatridge, M. [1 ]
Shankar, S. [1 ]
Mirrahimi, M. [1 ,2 ]
Schackert, F. [1 ]
Geerlings, K. [1 ]
Brecht, T. [1 ]
Sliwa, K. M. [1 ]
Abdo, B. [1 ]
Frunzio, L. [1 ]
Girvin, S. M. [1 ]
Schoelkopf, R. J. [1 ]
Devoret, M. H. [1 ]
机构
[1] Yale Univ, Dept Phys & Appl Phys, New Haven, CT 06520 USA
[2] Inst Natl Rech Informat & Automat Paris Rocquenco, F-78153 Le Chesnay, France
基金
美国国家科学基金会;
关键词
JOSEPHSON RING MODULATOR; SUPERCONDUCTING QUBIT; PHOTON; ELECTRODYNAMICS; COLLAPSE; LIMIT;
D O I
10.1126/science.1226897
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Measuring a quantum system can randomly perturb its state. The strength and nature of this back-action depend on the quantity that is measured. In a partial measurement performed by an ideal apparatus, quantum physics predicts that the system remains in a pure state whose evolution can be tracked perfectly from the measurement record. We demonstrated this property using a superconducting qubit dispersively coupled to a cavity traversed by a microwave signal. The back-action on the qubit state of a single measurement of both signal quadratures was observed and shown to produce a stochastic operation whose action is determined by the measurement result. This accurate monitoring of a qubit state is an essential prerequisite for measurement-based feedback control of quantum systems.
引用
收藏
页码:178 / 181
页数:4
相关论文
共 27 条
[1]   Josephson amplifier for qubit readout [J].
Abdo, Baleegh ;
Schackert, Flavius ;
Hatridge, Michael ;
Rigetti, Chad ;
Devoret, Michel .
APPLIED PHYSICS LETTERS, 2011, 99 (16)
[2]   Analog information processing at the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Vijay, R. ;
Manucharyan, V. E. ;
Siddiqi, I. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE PHYSICS, 2010, 6 (04) :296-302
[3]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[4]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[5]   QUANTUM NON-DEMOLITION MEASUREMENTS [J].
BRAGINSKY, VB ;
VORONTSOV, YI ;
THORNE, KS .
SCIENCE, 1980, 209 (4456) :547-557
[6]   Observing the progressive decoherence of the ''meter'' in a quantum measurement [J].
Brune, M ;
Hagley, E ;
Dreyer, J ;
Maitre, X ;
Maali, A ;
Wunderlich, C ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4887-4890
[7]  
Carmichael H., 1993, OPEN SYSTEMS APPROAC
[8]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839
[9]   Protecting superconducting qubits from radiation [J].
Corcoles, Antonio D. ;
Chow, Jerry M. ;
Gambetta, Jay M. ;
Rigetti, Chad ;
Rozen, J. R. ;
Keefe, George A. ;
Rothwell, Mary Beth ;
Ketchen, Mark B. ;
Steffen, M. .
APPLIED PHYSICS LETTERS, 2011, 99 (18)
[10]   Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect [J].
Gambetta, Jay ;
Blais, Alexandre ;
Boissonneault, M. ;
Houck, A. A. ;
Schuster, D. I. ;
Girvin, S. M. .
PHYSICAL REVIEW A, 2008, 77 (01)