Photocatalysis removing of NO based on modified carbon nitride: The effect of celestite mineral particles

被引:119
作者
Dong, Guohui [1 ]
Zhao, Liaoliao [1 ]
Wu, Xiaoxia [2 ]
Zhu, Mingshan [3 ]
Wang, Fu [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Shaanxi, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Jinan Univ, Sch Environm, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou 510632, Guangdong, Peoples R China
关键词
NO removal; Photocatalysis; Mineral particles; Celestite; g-C3N4; VISIBLE-LIGHT IRRADIATION; G-C3N4; PERFORMANCE; DEGRADATION; HYDROGEN; OXIDE;
D O I
10.1016/j.apcatb.2019.01.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atmospheric NO is one of the toxic and hazardous gases. Its' levels are continually rising in recent years. As we known, mineral particles contained in the atmosphere may affect the photocatalytic NO removal process. In this study, we found that celestite modification could greatly improve the activity (about 3.8 times) and stability of g-C3N4 for the photocatalytic NO removal. In our system, celestite particles embed in the N vacancies of g-C3N4. The synergistic effect of celestite and N vacancy is the origin of improved NO removal activity. During the light irradiation, photogenerated electrons can be captured and confined by N vacancy. Meanwhile, celestite can transfer these confined electrons to O-2 and produce more OH, which could oxidize NO to nitrate. These findings can help us to understand the influence of mineral particles in the photocatalytic NO removal and design highly efficient NO removal phtocatalysts.
引用
收藏
页码:459 / 468
页数:10
相关论文
共 22 条
[1]   Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light [J].
Ai, Zhihui ;
Ho, Wingkei ;
Lee, Shuncheng ;
Zhang, Lizhi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (11) :4143-4150
[2]   Neural model for the leaching of celestite in sodium carbonate solution [J].
Bingol, Deniz ;
Aydogan, Salih ;
Gultekin, S. Sinan .
CHEMICAL ENGINEERING JOURNAL, 2010, 165 (02) :617-624
[3]   Polymeric Carbon Nitride with Localized Aluminum Coordination Sites as a Durable and Efficient Photocatalyst for Visible Light Utilization [J].
Choi, Chi Hun ;
Lin, Lihua ;
Gim, Suji ;
Lee, Shinbi ;
Kim, Hyungjun ;
Wang, Xinchen ;
Choi, Wonyong .
ACS CATALYSIS, 2018, 8 (05) :4241-4256
[4]   Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants [J].
Cui, Yanjuan ;
Ding, Zhengxin ;
Liu, Ping ;
Antonietti, Markus ;
Fu, Xianzhi ;
Wang, Xinchen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (04) :1455-1462
[5]   Self doping promoted photocatalytic removal of no under visible light with bi2moo6: Indispensable role of superoxide ions [J].
Ding, Xing ;
Ho, Wingkei ;
Shang, Jian ;
Zhang, Lizhi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 :316-325
[6]   An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification [J].
Dong, Fan ;
Zhao, Zaiwang ;
Sun, Yanjuan ;
Zhang, Yuxin ;
Yan, Shuai ;
Wu, Zhongbiao .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12432-12440
[7]   Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets [J].
Dong, Guohui ;
Jacobs, Daniel L. ;
Zang, Ling ;
Wang, Chuanyi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 218 :515-524
[8]   Voids padding induced further enhancement in photocatalytic performance of porous graphene-like carbon nitride [J].
Dong, Guohui ;
Chen, Dong ;
Luo, Jianmin ;
Zhu, Yunqing ;
Zeng, Yubin ;
Wang, Chuanyi .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 335 :66-74
[9]   Removal of Nitric Oxide through Visible Light Photocatalysis by g-C3N4 Modified with Perylene Imides [J].
Dong, Guohui ;
Yang, Liping ;
Wang, Fu ;
Zang, Ling ;
Wang, Chuanyi .
ACS CATALYSIS, 2016, 6 (10) :6511-6519
[10]   Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal [J].
Dong, Guohui ;
Ho, Wingkei ;
Li, Yuhan ;
Zhang, Lizhi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 174 :477-485