Fully parabolic Keller-Segel model for chemotaxis with prevention of overcrowding

被引:24
作者
Di Francesco, Marco [1 ]
Rosado, Jesus [2 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, Sez Matemat Ingn, Fac Ingn, I-67040 Laquila, Italy
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
D O I
10.1088/0951-7715/21/11/012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a fully parabolic version of the Keller-Segel system in the presence of a volume filling effect which prevents blow-up of the L-infinity norm. This effect is sometimes referred to as prevention of overcrowding. As in the parabolic-elliptic version of this model (previously studied in (Burger et al 2006 SIAM J. Math. Anal. 38 1288-315)), the results in this paper basically infer that the combination of the prevention of the overcrowding effect with a linear diffusion for the density of cells implies domination of the diffusion effect for large times. In particular, first we show that both the density of cells and the concentration of the chemical vanish uniformly for large times, then we prove that the density of cells converges in L-1 towards the Gaussian profile of the heat equation as time goes to infinity, at a rate which differs from the rate of convergence to self-similarity for the heat equation by an arbitrarily small constant ('quasi-sharp rate').
引用
收藏
页码:2715 / 2730
页数:16
相关论文
共 27 条
[1]  
[Anonymous], 2008, COLLOQ MATH-WARSAW
[2]  
[Anonymous], 2004, APPL MATH, V49, P539, DOI [DOI 10.1007/S10492-004-6431-9, 10.1007/s10492-004-6431-9]
[3]   On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations [J].
Arnold, A ;
Markowich, P ;
Toscani, G ;
Unterreiter, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :43-100
[4]  
Blanchet A., 2006, Electron. J. Differential Equations, V2006, P1
[5]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[6]  
Calvez V, 2008, COMMUN MATH SCI, V6, P417
[7]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[8]   Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities [J].
Carrillo, JA ;
Jüngel, A ;
Markowich, PA ;
Toscani, G ;
Unterreiter, A .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (01) :1-82
[9]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[10]  
Corrias L., 2004, MILAN J MATH, V72, P1, DOI DOI 10.1007/s00032-003-0026-x