Plasmonic enhancement of thin-film solar cells using gold-black coatings

被引:2
作者
Fredricksen, C. J. [1 ]
Panjwani, D. R. [2 ]
Arnold, J. P. [2 ]
Figueiredo, P. N. [2 ]
Rezaie, F. K. [2 ]
Colwell, J. [2 ]
Baillie, K. [2 ]
Peppernick, S. J. [3 ]
Joly, A. G. [3 ]
Beck, K. M. [3 ]
Hess, W. P. [3 ]
Peale, R. E. [2 ]
机构
[1] LRC Engn Inc, 9345 Chandon Dr, Orlando, FL 32825 USA
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[3] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
来源
NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION II | 2011年 / 8111卷
基金
美国国家航空航天局;
关键词
plasmonics; thin-film; solar cell; metallic nanoparticles; OPTICAL-PROPERTIES;
D O I
10.1117/12.893620
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Coatings of conducting gold-black nano-structures on commercial thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum from 400 to 800 nm wavelength. The efficiency, i.e. the ratio of the maximum electrical output power to the incident solar power, is found to increase 7% for initial un-optimized coatings. Metal blacks are produced cheaply and quickly in a low-vacuum process requiring no lithographic patterning. The inherently broad particle-size distribution is responsible for the broad spectrum enhancement in comparison to what has been reported for mono-disperse lithographically deposited or self-assembled metal nano-particles. Photoemission electron microscopy reveals the spatial-spectral distribution of hot-spots for plasmon resonances, where scattering of normally-incident solar flux into the plane increases the effective optical path in the thin film to enhance light harvesting. Efficiency enhancement is correlated with percent coverage and particle size distribution, which are determined from histogram and wavelet analysis of scanning electron microscopy images. Electrodynamic simulations reveal how the gold-black particles scatter the radiation and locally enhance the field strength.
引用
收藏
页数:15
相关论文
共 19 条
[1]   Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells [J].
Akimov, Yu A. ;
Koh, W. S. .
NANOTECHNOLOGY, 2010, 21 (23)
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[3]   Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters [J].
Biteen, JS ;
Pacifici, D ;
Lewis, NS ;
Atwater, HA .
NANO LETTERS, 2005, 5 (09) :1768-1773
[4]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[5]  
Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
[6]   Nanostructures in photovoltaics [J].
Catchpole, Kylie R. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1849) :3493-3503
[7]  
Cleary Justin W., 2011, J MAT SCI ENG, V5, P171
[8]   PARTICULATE NATURE OF SOLAR ABSORBING FILMS - GOLD BLACK [J].
DOLAND, C ;
ONEILL, P ;
IGNATIEV, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1977, 14 (01) :259-262
[10]   THE INFRARED PROPERTIES OF GOLD SMOKE DEPOSITS [J].
HARRIS, L ;
BEASLEY, JK .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1952, 42 (02) :134-140