TO ESCAPE OR NOT TO ESCAPE, THAT IS THE QUESTION - PERTURBING THE HENON-HEILES HAMILTONIAN

被引:30
作者
Blesa, Fernando [1 ]
Seoane, Jesus M. [2 ]
Barrio, Roberto [3 ,4 ]
Sanjuan, Miguel A. F. [2 ,5 ]
机构
[1] Univ Zaragoza, Dept Fis Aplicada, E-50009 Zaragoza, Spain
[2] Univ Rey Juan Carlos, Nonlinear Dynam Chaos & Complex Syst Grp, Dept Fis, Madrid 28933, Spain
[3] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[5] Beijing Jiaotong Univ, Sch Sci, Dept Math, Beijing 100044, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
关键词
Nonlinear dynamics and chaos; fractals; numerical simulation of chaotic systems; CHAOS;
D O I
10.1142/S0218127412300108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the Henon-Heiles Hamiltonian, as a paradigm of open Hamiltonian systems, in the presence of different kinds of perturbations as dissipation, noise and periodic forcing, which are very typical in different physical situations. We focus our work on both the effects of these perturbations on the escaping dynamics and on the basins associated to the phase space and to the physical space. We have also found, in presence of a periodic forcing, an exponential-like decay law for the survival probability of the particles in the scattering region where the frequency of the forcing plays a crucial role. In the bounded regions, the use of the OFLI2 chaos indicator has allowed us to characterize the orbits. We have compared these results with the previous ones obtained for the dissipative and noisy case. Finally, we expect this work to be useful for a better understanding of the escapes in open Hamiltonian systems in the presence of different kinds of perturbations.
引用
收藏
页数:9
相关论文
共 25 条
  • [1] Wada basins and chaotic invariant sets in the Henon-Heiles system -: art. no. 066208
    Aguirre, J
    Vallejo, JC
    Sanjuán, MAF
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 11
  • [2] Fractal structures in nonlinear dynamics
    Aguirre, Jacobo
    Viana, Ricardo L.
    Sanjuan, Miguel A. F.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 333 - 386
  • [3] Babiano A., 2004, PHYS REV LETT, V84
  • [4] BIFURCATIONS AND CHAOS IN HAMILTONIAN SYSTEMS
    Barrio, R.
    Blesa, F.
    Serrano, S.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (05): : 1293 - 1319
  • [5] Fractal structures in the Henon-Heiles Hamiltonian
    Barrio, R.
    Blesa, F.
    Serrano, S.
    [J]. EPL, 2008, 82 (01)
  • [6] Bifurcations and safe regions in open Hamiltonians
    Barrio, R.
    Blesa, F.
    Serrano, S.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [7] Painting chaos: A gallery of sensitivity plots of classical problems
    Barrio, Roberto
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 2777 - 2798
  • [8] INHIBITION OF CHAOS IN HAMILTONIAN-SYSTEMS BY PERIODIC PULSES
    CHACON, R
    [J]. PHYSICAL REVIEW E, 1994, 50 (02): : 750 - 753
  • [9] CONTOPOULOS G, 1990, ASTRON ASTROPHYS, V231, P41
  • [10] Chaotic Hamiltonian pumps
    Dittrich, T
    Gutiérrez, M
    Sinuco, G
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 327 (1-2) : 145 - 150