Deep Learning for the Classification of Small-Cell and Non-Small-Cell Lung Cancer

被引:68
作者
Kriegsmann, Mark [1 ,2 ]
Haag, Christian [1 ,3 ]
Weis, Cleo-Aron [4 ]
Steinbuss, Georg [1 ,3 ]
Warth, Arne [5 ]
Zgorzelski, Christiane [1 ]
Muley, Thomas [2 ,6 ]
Winter, Hauke [2 ,6 ]
Eichhorn, Martin E. [2 ,6 ]
Eichhorn, Florian [2 ,6 ]
Kriegsmann, Joerg [7 ,8 ]
Christopolous, Petros [2 ,9 ]
Thomas, Michael [2 ,9 ]
Witzens-Harig, Mathias [10 ]
Sinn, Peter [1 ]
von Winterfeld, Moritz [1 ]
Heussel, Claus Peter [2 ,11 ,12 ]
Herth, Felix J. F. [2 ,13 ]
Klauschen, Frederick [14 ]
Stenzinger, Albrecht [1 ,2 ]
Kriegsmann, Katharina [3 ]
机构
[1] Heidelberg Univ, Inst Pathol, D-69120 Heidelberg, Germany
[2] German Ctr Lung Res DZL, Translat Lung Res Ctr Heidelberg, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Dept Hematol Oncol & Rheumatol, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Univ Med Ctr Mannheim, Inst Pathol, D-68782 Mannheim, Germany
[5] UEGP MVZ Giessen Wetzlar Limburg, Inst Pathol Cytopathol & Mol Pathol, D-65549 Limburg, Germany
[6] Heidelberg Univ, Dept Thorac Surg, Thoraxklin, D-69126 Heidelberg, Germany
[7] Mol Pathol Trier, D-54296 Trier, Germany
[8] Danube Private Univ Krems, A-3500 Krems, Austria
[9] Heidelberg Univ, Dept Thorac Oncol, Thoraxklin, D-69126 Heidelberg, Germany
[10] Heidelberg Univ, Med Fac, D-69120 Heidelberg, Germany
[11] Heidelberg Univ, Dept Diagnost & Intervent Radiol Nucl Med, Thoraxklin, D-69120 Heidelberg, Germany
[12] Heidelberg Univ, Dept Diagnost & Intervent Radiol, Thoraxklin, D-69120 Heidelberg, Germany
[13] Heidelberg Univ, Dept Pneumol & Crit Care Med, Thoraxklin, D-69126 Heidelberg, Germany
[14] Univ Hosp Charite, Inst Pathol, D-10117 Berlin, Germany
关键词
artificial intelligence; deep learning; lung cancer; histology; non-small cell lung cancer; small cell lung cancer; DIGITAL PATHOLOGY; PULMONARY; IMMUNOMARKERS; DIAGNOSIS;
D O I
10.3390/cancers12061604
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Reliable entity subtyping is paramount for therapy stratification in lung cancer. Morphological evaluation remains the basis for entity subtyping and directs the application of additional methods such as immunohistochemistry (IHC). The decision of whether to perform IHC for subtyping is subjective, and access to IHC is not available worldwide. Thus, the application of additional methods to support morphological entity subtyping is desirable. Therefore, the ability of convolutional neuronal networks (CNNs) to classify the most common lung cancer subtypes, pulmonary adenocarcinoma (ADC), pulmonary squamous cell carcinoma (SqCC), and small-cell lung cancer (SCLC), was evaluated. A cohort of 80 ADC, 80 SqCC, 80 SCLC, and 30 skeletal muscle specimens was assembled; slides were scanned; tumor areas were annotated; image patches were extracted; and cases were randomly assigned to a training, validation or test set. Multiple CNN architectures (VGG16, InceptionV3, and InceptionResNetV2) were trained and optimized to classify the four entities. A quality control (QC) metric was established. An optimized InceptionV3 CNN architecture yielded the highest classification accuracy and was used for the classification of the test set. Image patch and patient-based CNN classification results were 95% and 100% in the test set after the application of strict QC. Misclassified cases mainly included ADC and SqCC. The QC metric identified cases that needed further IHC for definite entity subtyping. The study highlights the potential and limitations of CNN image classification models for tumor differentiation.
引用
收藏
页码:1 / 15
页数:16
相关论文
共 59 条
[1]   Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study [J].
Acs, Balazs ;
Pelekanou, Vasiliki ;
Bai, Yalai ;
Martinez-Morilla, Sandra ;
Toki, Maria ;
Leung, Samuel C. Y. ;
Nielsen, Torsten O. ;
Rimm, David L. .
LABORATORY INVESTIGATION, 2019, 99 (01) :107-117
[2]  
Adeyi OA, 2011, ARCH PATHOL LAB MED, V135, P183, DOI 10.1043/2008-0432-CCR.1
[3]  
Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI 10.4103/jpi.jpi_82_18
[4]  
[Anonymous], 2019, PROTEOM CLIN APPL
[5]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[6]   Integrated tumor identification and automated scoring minimizes pathologist involvement and provides new insights to key biomarkers in breast cancer [J].
Bankhead, Peter ;
Fernandez, Jose A. ;
McArt, Darragh G. ;
Boyle, David P. ;
Li, Gerald ;
Loughrey, Maurice B. ;
Irwin, Gareth W. ;
Harkin, D. Paul ;
James, Jacqueline A. ;
McQuaid, Stephen ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
LABORATORY INVESTIGATION, 2018, 98 (01) :15-26
[7]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[8]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[9]   Non-small-cell lung cancers: a heterogeneous set of diseases [J].
Chen, Zhao ;
Fillmore, Christine M. ;
Hammerman, Peter S. ;
Kim, Carla F. ;
Wong, Kwok-Kin .
NATURE REVIEWS CANCER, 2014, 14 (08) :535-546
[10]   Secure Distributed Data Management for Fog Computing in Large-Scale IoT Application: A Blockchain-based Solution [J].
Chen, Zunming ;
Cui, Hongyan ;
Wu, Ensen ;
Li, Yuanxin ;
Xi, Yu .
2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,