machine learning;
neural networks;
protein docking and refinement;
RMSD prediction;
scoring functions;
EVOLUTIONARY TRACE;
WEB SERVER;
DOCKING;
ELECTROSTATICS;
DESOLVATION;
REFINEMENT;
ALGORITHMS;
D O I:
10.1089/cmb.2016.0137
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Discriminating native-like structures from false positives with high accuracy is one of the biggest challenges in protein-protein docking. While there is an agreement on the existence of a relationship between various favorable intermolecular interactions (e.g., Van der Waals, electrostatic, and desolvation forces) and the similarity of a conformation to its native structure, the precise nature of this relationship is not known. Existing protein-protein docking methods typically formulate this relationship as a weighted sum of selected terms and calibrate their weights by using a training set to evaluate and rank candidate complexes. Despite improvements in the predictive power of recent docking methods, producing a large number of false positives by even state-of-the-art methods often leads to failure in predicting the correct binding of many complexes. With the aid of machine learning methods, we tested several approaches that not only rank candidate structures relative to each other but also predict how similar each candidate is to the native conformation. We trained a two-layer neural network, a multilayer neural network, and a network of Restricted Boltzmann Machines against extensive data sets of unbound complexes generated by RosettaDock and PyDock. We validated these methods with a set of refinement candidate structures. We were able to predict the root mean squared deviations (RMSDs) of protein complexes with a very small, often less than 1.5 angstrom, error margin when trained with structures that have RMSD values of up to 7 angstrom. In our most recent experiments with the protein samples having RMSD values up to 27 angstrom, the average prediction error was still relatively small, attesting to the potential of our approach in predicting the correct binding of protein-protein complexes.
机构:
Sun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
Cai, Jie
Li, Chanjuan
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
Li, Chanjuan
Liu, Zhihong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
Liu, Zhihong
Du, Jiewen
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
Du, Jiewen
Ye, Jiming
论文数: 0引用数: 0
h-index: 0
机构:
RMIT Univ, Lipid Biol & Metab Dis Hlth Innovat Res Inst, POB 71, Melbourne, Vic 3083, AustraliaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
Ye, Jiming
Gu, Qiong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
Gu, Qiong
Xu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Pharmaceut Sci, Res Ctr Drug Discovery, 132 East Circle Univ City, Guangzhou 510006, Guangdong, Peoples R China
机构:
UNL, Dept Informat, Santa Fe, Argentina
Consejo Nacl Invest Cient & Tecn, Sinc I, Buenos Aires, DF, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Stegmayer, Georgina
Di Persia, Leandro E.
论文数: 0引用数: 0
h-index: 0
机构:
UNL, Dept Informat, Santa Fe, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Di Persia, Leandro E.
Rubiolo, Mariano
论文数: 0引用数: 0
h-index: 0
机构:
UNL, Dept Informat, Santa Fe, Argentina
Sinc I, Santa Fe, Argentina
UNL, Dept Informat, Santa Fe, Argentina
UTN FRSF, Dept Informat Syst Engn, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Rubiolo, Mariano
Gerard, Matias
论文数: 0引用数: 0
h-index: 0
机构:
UNL, Dept Informat, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Gerard, Matias
Pividori, Milton
论文数: 0引用数: 0
h-index: 0
机构:
Sinc I, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Pividori, Milton
Yones, Cristian
论文数: 0引用数: 0
h-index: 0
机构:
Sinc I, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Yones, Cristian
Bugnon, Leandro A.
论文数: 0引用数: 0
h-index: 0
机构:
Sinc I, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Bugnon, Leandro A.
Rodriguez, Tadeo
论文数: 0引用数: 0
h-index: 0
机构:
Sinc I, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Rodriguez, Tadeo
Raad, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Sinc I, Santa Fe, ArgentinaUNL, Dept Informat, Santa Fe, Argentina
Raad, Jonathan
Milone, Diego H.
论文数: 0引用数: 0
h-index: 0
机构:
UNL, Dept Informat, Santa Fe, Argentina
Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, ArgentinaUNL, Dept Informat, Santa Fe, Argentina