Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms

被引:62
作者
Lange, Kyle J. [1 ]
Sui, Pang-Chieh [1 ]
Djilali, Ned [1 ,2 ]
机构
[1] Univ Victoria, Inst Integrated Energy Syst, Victoria, BC V9A 7M6, Canada
[2] Univ Victoria, Dept Mech Engn, Victoria, BC V9A 7M6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PEM fuel cell; Catalyst layer; Effective transport properties; Catalyst layer reconstruction; Pore scale model; DIRECT NUMERICAL-SIMULATION; ELECTROLYTE FUEL-CELLS; POROUS-MEDIA; PROTON CONDUCTIVITY; PEFC ELECTRODES; DIFFUSION; OXYGEN; MICROSTRUCTURE; NAFION; OPTIMIZATION;
D O I
10.1016/j.jpowsour.2011.11.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A key challenge in the use of simulations to determine transport properties of PEMFC catalyst layers is the computational reconstruction of the catalyst layer microstructure. In this work, a number of different algorithms incorporating different assumptions are used to computationally reconstruct a large number of catalyst layer microstructures. In particular, the different algorithms use a variety of methods to account for agglomeration and distribution of carbon black spheres and ionomer. A pore scale model is then used to compute effective transport properties for each microstructure. It is found that the choice of the considered reconstruction algorithms does not have a significant effect on effective transport properties in most cases. Finally, the model assumptions which account for Knudsen diffusion are analyzed and modified to account for non-cylindrical pore structures. When cases are run using the Derjaguin correction for Knudsen diffusion, the obtained computational results are much closer to experimental data. Published by Elsevier B.V.
引用
收藏
页码:354 / 365
页数:12
相关论文
共 40 条
[31]   Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer [J].
Siddique, N. A. ;
Liu, Fuqiang .
ELECTROCHIMICA ACTA, 2010, 55 (19) :5357-5366
[32]   Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method [J].
Sone, Y ;
Ekdunge, P ;
Simonsson, D .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (04) :1254-1259
[33]   Direct numerical simulation (DNS) modeling of PEFC electrodes - Part I. Regular microstructure [J].
Wang, GQ ;
Mukherjee, PP ;
Wang, CY .
ELECTROCHIMICA ACTA, 2006, 51 (15) :3139-3150
[34]   Direct numerical simulation (DNS) modeling of PEFC electrodes - Part II. Random microstructure [J].
Wang, GQ ;
Mukherjee, PP ;
Wang, CY .
ELECTROCHIMICA ACTA, 2006, 51 (15) :3151-3160
[35]   Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling [J].
Wang, Guoqing ;
Mukherjee, Partha P. ;
Wang, Chao-Yang .
ELECTROCHIMICA ACTA, 2007, 52 (22) :6367-6377
[36]  
Wolfram-Alpha, 2011, THERM COND MOIST AIR
[37]   Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells [J].
Yu, Zhiqiang ;
Carter, Robert N. .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :1079-1084
[38]   The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures [J].
Zalc, JM ;
Reyes, SC ;
Iglesia, E .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (14) :2947-2960
[39]   THE WATER-CONTENT DEPENDENCE OF ELECTROOSMOTIC DRAG IN PROTON-CONDUCTING POLYMER ELECTROLYTES [J].
ZAWODZINSKI, TA ;
DAVEY, J ;
VALERIO, J ;
GOTTESFELD, S .
ELECTROCHIMICA ACTA, 1995, 40 (03) :297-302
[40]   Diffusion and Interfacial Transport of Water in Nafion [J].
Zhao, Qiao ;
Majsztrik, Paul ;
Benziger, Jay .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (12) :2717-2727